Construction and Building Materials 134 (2017) 18-31

Contents lists available at ScienceDirect

Construction and Building Materials

journal homepage: www.elsevier.com/locate/conbuildmat

Numerical and experimental characterization of the mechanical behavior of a new recycled elastomer for vibration isolation in railway applications

IS

S. Diego^a, J.A. Casado^a, I. Carrascal^a, D. Ferreño^{a,*}, J. Cardona^b, R. Arcos^c

^a LADICIM (Laboratory of the Division of Science and Engineering of Materials), University of Cantabria, Spain ^bAV Ingenieros, Barcelona, Spain ^c Acoustical and Mechanical Engineering Laboratory (LEAM), Polytechnic University of Cataluña, Spain

HIGHLIGHTS

• A new material was validated to produce anti-vibration mats for railway applications.

• The mechanical properties and the efficiency against vibrations were measured.

• A Finite Element model was validated.

ARTICLE INFO

Article history Received 8 July 2015 Received in revised form 15 November 2016 Accepted 21 December 2016 Available online 29 December 2016

Keywords: Recycled elastomer Finite Element method Vibration isolation Insertion Loss Fatigue Aging

ABSTRACT

This research has been developed in the frame of a European project involving several partners with the aim of developing an elastomeric "eco-friendly" material based on end-of-life tyres. It is a material specifically designed for the manufacture of anti-vibration mats to be used under ballasted railway tracks or under concrete slab tracks to avoid or to reduce the ground-borne vibration transmission. This paper describes the experimental, analytical and numerical results of the characterization of the mechanical behavior of this new elastomeric material. The process of validation was developed in three domains: firstly, a thorough characterization of the behavior of mats manufactured in this new material under different situations was conducted. Test were carried out for determining the static and dynamic modules, the behavior under fatigue conditions and the ability of the material to resist mechanical actions in the presence of frost as well as the aging influence of water and temperature. Second, a study on the capacity of this type of mats to reduce the vibrations generated by rail traffic was carried out. To this end, the mechanical system constituted by the track, sleepers, ballast and soil, was modeled analytically, introducing also the effect derived from the presence of the anti-vibration mats. Finally, a Finite Element model in which the mechanical behavior of the material has been described using a Mooney-Rivlin model has been experimentally validated. Although this is a purely theoretical exercise, this result is a cause for optimism as it confirms the suitability of the use of the Finite Element method as a predictive tool for the behavior of anti-vibration mats under in-service conditions or in the process of pre-validation of new geometries.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and aim

According to the European Tyre & Rubber Manufacturers' Association (ETRMA), more than 300 million tyres were removed in Europe in the year 2007 which resulted in the generation of some 3.4 million tonnes of waste [1]. Moreover, the European Commis-

* Corresponding author.

sion's 2008 Waste Framework Directive [2] states that all products derived from end-of-life tyres (ELT) should no longer be considered as waste but as a resource and as a secondary material for new applications. This implies a pressing need to explore and develop new uses for ELTs and environmentally friendly processes for delivering useable materials. As this paper demonstrates, the railway sector provides an excellent opportunity for the manufacture of components by recycling ELTs.

Rail traffic creates vibrations that are transmitted through the track structure causing noise pollution and, occasionally, may even

E-mail addresses: jose.casado@unican.es (J.A. Casado), ferrenod@unican.es (D. Ferreño).

tgα H loss factor

strain energy potential

Nomenclature

BT	ballasted (railway) track
BT-UBM	ballasted (railway) track provided with an UBM
c ₁₀ , c ₀₁ , c	c_{20} , c_{11} and c_{02} five free parameters of the Money-Rivlin model
C_f, C_b, C_{ubm}	
	fasteners, ballast and UBM viscous dampings
C _{dyn}	dynamic modulus of the mat.
C _{dyn,10Hz}	dynamic modulus ob the mat obtained at a frequency of 10 Hz
C _{sta}	static modulus of the mat
C _{sta,i}	initial value of C _{sta} , before performing the frost damage test
C _{sta,f}	final value of C _{sta} , after performing the frost damage test
C _{sta.h}	horizontal static modulus of the mat
D _{Pg} and I	D _{sg} P- and S-waves associated damping coefficient
Eij	components of the strain tensor.
E_r	rail Young's modulus.
ETRMA	European Tyre & Rubber Manufacturers' Association
ELT	end-of-life tyres
f	frequency
F	deformation gradient
FE	Finite Elements
IL	Insertion Loss
Ir	rail moment of inertia
J	total volume ratio
Jei	elastic volume ratio
J ^m	thermal volume ratio
k_f, k_b, k_{ub}	m fasteners, ballast and UBM stiffnesses
L ₀	initial diameter of the specimen used to determine the
	Poisson's ratio
LVDT	linear variable differential transformer
m _s and m _b sleepers and ballast distributed masses	
RE	relative error (of the FE fitting procedure)
SD	standard deviation
S ₀	cross section of the mats used to determine C_{sta} or C_{dyn}
S_r	rail cross-section area
Т	test temperature
T _{ij}	components of the stress tensor
Ti	experimental stress value
Ti	nominal stress value

UBM under-ballast mat U_{dev} deviatoric component of the strain energy potential UIC Union Internationale Des Chemins De Fer (International Union of Railways) U^{Uniso} unisolated receptance of the ground surface U_{g1}^{Iso} U_{g1}^{Iso} U_{vol} isolated receptance of the ground surface volumetric component of the strain energy potential x and y spatial coordinates (analytical model) rail vertical displacement (analytical model) Z_r sleepers vertical displacement (analytical model) Z_{S} ballast bottom vertical displacement (analytical model) Z_{bd} subgrade surface vertical displacement (analytical mod-Z_{g1} el) permanent displacement after performing a C_{sta.h} test δperm variation of the static modulus after performing the ΔC_{sta} frost damage test $\Delta \delta_m$ change of the thickness of the mat as a consequence of ΔF during the C_{sta} or C_{dvn} tests longitudinal strain of the specimen (determination of ϵ_{L} Poisson's ratio) transversal strain of the specimen (determination of εт Poisson's ratio) εth thermal strain η_{f} , η_{b} and η_{ubm} fasteners, ballast and UBM structural damping coefficients η_r rail structural damping coefficient first Lamé's constant λ_{g} principal stretches λi λ'n deviatoric stretches second Lamé's constant μ_{g} ν Poisson's ratio subgrade density ρ_{g} rail density ρ_r initial diameter of the specimen used to determine the \emptyset_0 Poisson's ratio Frequency ω

cause structural damage to the nearby buildings. This represents one of the major impacts upon the environment from rail systems. For this reason, anti-vibration mats are commonly placed under ballasted railway tracks or under concrete slab tracks to avoid or to reduce the ground-borne vibration transmission. The most used anti-vibration elements are made of rockwool, rubber or cork.

This contribution was developed in the context of a research project under the financial support of the European Commission. Its overall objective was to demonstrate the reliability of using elastomeric particles recycled from ELTs and blended with resin as a new option to produce an "eco-friendly" anti-vibration solution in the form of elastomeric under-ballast mats (UBM). This solution appears as an environmental imperative provided the current large accumulations of used tyres as well as the future prospects in this regard. Specifically, this alternative is an interesting application for urban railways (metro) as well as for conventional railway lines, mainly in urban areas. The aim of this work is to demonstrate that this kind of environmental-friendly elastomeric material, manufactured in the form of mats, can satisfy the current vibration mitigation needs of modern railway lines as well as the requirements imposed by the Railway Administrations. The validation of this material for these purposes would open the door to the recycling of millions of tyres that are currently stored as waste, with the corresponding environmental improvement. In addition, valuable experimental information concerning this material is provided, suitable to be used in the design of new railway lines.

The paper is broken down into three parts:

- Experimental validation: A number of mats were tested under static and dynamic regimes to determine their response subjected to in-service conditions. In addition, accelerated fatigue tests were carried out on a section of ballasted track. Finally, mats were subjected to adverse environmental conditions to simulate frost damage, thermal and water aging.
- Study of the efficiency for vibration attenuation: The Insertion Loss (IL) parameter was determined considering the influence of antivibration mats. In order to properly interpret the experimental results, an analytical model of the superstructure was developed, considering both the presence and the absence of the UBM.

Download English Version:

https://daneshyari.com/en/article/6480773

Download Persian Version:

https://daneshyari.com/article/6480773

Daneshyari.com