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a  b  s  t  r  a  c  t

CFD  simulation  is a powerful  tool  to estimate  an  indoor  physical  field  of  interest  but it  is computationally
expensive.  The  simulation  has  to be  repeated  if the  environment  (e.g.,  heat  sources)  changes.  In this  work,
we propose  a two-stage  physical  field  reconstruction  (TSPFR)  approach  to  directly  estimate  an  indoor
physical  field  without  rerunning  the  CFD  simulation.  Current  methods  for physical  field  reconstruction
separately  used  the observed  input  parameters  of  the  CFD  simulation  and  the sparse  sensor  observa-
tions.  We  fuse  both  of  them.  Using  the  principle  component  analysis  (PCA)  technique,  the  physical  field
can  be  reconstructed  by estimating  the  PCA components.  In  this  paper,  we  estimate  the  physical  field
in  two  stages.  In the  first stage,  we  proposed  a scaled  extreme  learning  machine  (sELM)  algorithm  to
train  a regression  model  with  which  we  can  estimate  PCA  components  from  the  observed  input  param-
eters  and  reconstruct  an  approximated  physical  field.  In  the  second  stage,  we  correct  the  physical  field
reconstructed  in  the  first  stage  with  the  sparse  sensor  observations.  We  theoretically  show  that  the  pro-
posed  approach  outperforms  the  current  one  stage  methods.  When  using  current  methods,  the  number
of  sensor  observations  cannot  be  less  than  that  of the  dominant  PCA  modes.  We  show  how  the  proposed
method  can  reduce  the  number  of  required  sensor  observations.  Finally,  we  provide  an  indoor  thermal
map  estimation  problem  to show  the  effectiveness  of the  proposed  method.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Energy usage is continuously growing worldwide as nations
pursue economic growth and infrastructure development. Around
one-third of energy is consumed in buildings, and it is still increas-
ing [1]. In the US, the heating, ventilating and air-conditioning
systems (HVACs) account for around half of energy consumption in
buildings [2]. The estimation of indoor physical fields, such as the
estimation of indoor thermal map  and airflow patterns is signifi-
cant for energy efficient thermal and airflow management [2–8].
One ‘perfect’ HVAC system should be able to maintain the occu-
pants’ thermal comfort sensation while being energy efficient. On
one hand, the indoor physical fields, e.g., thermal map  and airflow
patterns, have been widely used to estimate the distribution of
indoor human thermal comfort index [9–13]. On the other hand,
the physical fields can be used to analyze the indoor air for local-
ized air-conditioning [5,14–16] and can be used as the feedback
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information for airflow control [17–19], which can maintain the
thermal comfort and reduce energy consumption of HVACs.

However, it is not easy to observe environmental physical fields
because sensor networks can only observe the data at particular
sparse locations. Some special sensors can provide dense obser-
vations. For example, the thermal-infrared camera, it can provide
2-dimensional thermal map  of the surface of an object but can-
not provide environmental temperature field. The computational
fluid dynamics (CFD) simulation is the most popular tool to pre-
dict indoor physical fields [20]. From a CFD simulation we can
obtain the global information of one indoor physical field, which is
very expensive from experiments. However, CFD simulations suffer
from three issues: (1) the simulations require experts to carefully
calibrate the CFD model, (2) the simulation results are usually inac-
curate compared with sensor observations, and (3) the simulation
is computationally very expensive and time-consuming, especially
for large scale 3-dimensional cases.

For many CFD applications, to produce reliable simulation
results, we need to adjust the input parameters of the simula-
tion to amend the agreement between the simulated results and
the corresponding experimental data [21–23]. The input parame-
ters can be model parameters [23], boundary condition parameters
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[24–28], Rayleigh number [28,29], Mach number [30,31], etc. Tens
of simulation runs are required for the calibration process of finding
acceptable parameters.

In addition, for the indoor environment, the input parameters
are commonly varying due to the change of heat source dis-
tribution, the change of radiation condition, the change of the
set-point of air-conditioning system, etc. If the environment (e.g.,
heat sources) changes, which leads to the change of both the physi-
cal field and the input parameters of the CFD simulation, to estimate
the physical field we have to repeat the simulation. Many efforts to
speed up CFD simulations were made in recent years, such as the
fast fluid dynamics (FFD) model [32,33]. For many cases, however,
the cost to rerun the simulation for the varying parameters is still
very expensive. Therefore, a new method which can quickly predict
a physical field is highly desirable.

1.1. Related prior work

Indoor physical fields are with dense data. Directly estimat-
ing a physical field from sparse sensor observations is an ill-posed
problem. Model-order-reduction techniques can be used to solve
this ill-posed problem. Principle components analysis (PCA), also
known as proper orthogonal decomposition in fluid mechanics
community, is a powerful model-order-reduction technique to rep-
resent physical fields by a linear combination of their dominant PCA
modes [27,34–36]. The number of the dominant PCA modes is far
less than that of the mesh points in the CFD simulation. By find-
ing the dominant PCA coefficients we can easily estimate an indoor
physical field.

Currently, there are two popular methods to estimate the PCA
coefficients of one physical field of interest.

• One approach is to find regression models to estimate the
PCA coefficients from the observed input parameters of inter-
est [28–31]. Most of current works [29–31] used the spline
interpolation technique to train the regression models, which
are multi-input-single-output (MISO) functions. For each PCA
coefficient, we need to train a regression model. The spline inter-
polation technique has been widely used for regression problems.
It can provide very good fitting performance if the number of
input variable is less than four, while if the input variable are
more than three, this technique may  not be a good choice [37].

• The other approach is to solve the linear measurement equation
of the physical field of interest [27,34,38,39]. With the PCA modes,
we can easily find a linear measurement model for every sin-
gle point of the physical field in terms of the PCA coefficients. If
enough sensor observations are available, we can easily estimate
the dominant PCA coefficients. To solve this linear inverse prob-
lem, the number of sensor observations cannot be less than that
of the dominant PCA modes, and the sensing locations are very
important in terms of the estimation performance [40].

The two approaches find the PCA components from the input
parameters and the sparse sensor observations, respectively. In the
case that both input parameters and sparse sensor observations are
known, how to fuse them to better estimate the indoor physical
field? If the number of sensor observations is less than that of the
dominant PCA modes, how to estimate the physical field? It is very
interesting to answer the two questions.

1.2. Our method

In this work, we consider the case that both the input param-
eters of interest and some locations of an indoor physical field
are observed. We  fuse both types of information to achieve bet-
ter estimation of the field. We  present a two-stage physical field

reconstruction (TSPFR) method by combining the two current
approaches. The block diagram of the TSPFR is given in Fig. 1.

To reconstruct one physical field based on sparse observations,
we need to firstly build up the dominant PCA modes of the phys-
ical fields of interest. Using the method of snapshots [41], we  can
easily find the PCA modes from the known physical field database
obtained from off-line CFD simulations under various input param-
eters.

In the first stage, we train a regression model to estimate the
PCA coefficients from the input parameters. In previous work,
spline interpolation [29–31] and extreme learning machine (ELM)
[26] were used to train the regression models. To find a better
regression model, we  propose a variation of the ELM and name
it as the scaled extreme learning machine (sELM). Here, sELM is
a powerful approach to train a neural-network, which is a multi-
input-multi-output (MIMO) regression model. When using the
spline interpolation, we need to train many MISO regression mod-
els. If using sELM, we train only one MIMO  regression model. With
the observed input parameters and the PCA modes, we  can esti-
mate all the PCA components from which the indoor physical field
can be easily reconstructed.

Compared with the physical field reconstructed in the first stage,
sensor observations of the field are considered to be more accurate.
However, the observations only provide information of the sensing
locations. For simplicity, we introduce an error field, i.e., the dif-
ference between the indoor physical field reconstructed in the first
stage and the real field. With the sensor observations, we can obtain
a linear measurement model of the error field.

In the second stage, we  can obtain the dominant PCA coeffi-
cients of the error field from the measurement model by solving a
least square problem. Then, we can reconstruct the error field with
which we can modify the physical field estimated in the first stage.
Such a modification is to correct the dominant PCA components of
the physical field reconstructed in the first stage. We  then theoreti-
cally show why the proposed TSPFR approach outperforms the two
current one stage approaches.

In addition, some of the PCA components may  be well estimated
in the first stage, which are not required to be corrected in the sec-
ond stage. The leave-one-out-cross-validation (LOOCV) technique
can be used to test the regression model and determine the PCA
components which can be well-estimated in the first stage. We  can
simply remove the PCA components that are well-estimated in the
first stage from the low dimensional approximation of the error
field in the second stage. As mentioned before, the number of sen-
sor observations cannot be less than the number of PCA modes used
in the second stage. In this case, the number of PCA modes used in
the second stage is reduced. Hence, we can reduce the number of
sensor observations.

1.3. Statements of our contributions

We apply the proposed TSPFR approach to estimate the indoor
thermal maps of one air-conditioned room. The results demon-
strate that compared with the current one-stage methods, the
proposed two-stage method can provide better estimation of the
thermal map  with less sensor observations.

In this work, we fuse the information of observed input parame-
ters of the CFD simulation and the sparse observations of the indoor
physical field to achieve better physical field estimation. The brief
idea of the two stage method was previously presented in [26]. This
paper can be viewed as a update version of [26]. We  have greatly
improved the two  stage method. Compared with previous work
and [26], we  summarize the contributions of this paper as follows:

• We provide a sELM algorithm which is shown better and more
convenient than the commonly used spline interpolation method
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