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The fraction of the intersected link in fluid region is an important parameter in non-equilibrium
extrapolation method (NEM) in the lattice Boltzmann study since the NEM adopts different extrapolation
schemes when the fraction reaches a critical value. In the present study, effect of the critical value of the
fraction on the lattice Boltzmann simulations of flows with curved boundaries is investigated. The flows
around a single cylinder and two parallel-placed cylinders under uniform incoming streaming are chosen
as typical cases. For these given flows, small critical value of the fraction causes the lattice Boltzmann
simulation to suffer severe numerical instability. Moreover, the numerical results also show that large
critical value of the fraction can result in more accurate numerical results for flows under large Reynolds
numbers, while the numerical accuracy is almost independent of the critical value for flows under small
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1. Introduction

The lattice Boltzmann method (LBM), as a novel mesoscopic
numerical algorithm, has attracted considerable attention over last
decade. In comparison with the conventional numerical
approaches in the computational fluid dynamics (CFD) field, this
method presents many distinct advantages, such as simple
formulations, favorable parallel-computing structure and capa-
bility in dealing with complex geometries. More importantly, the
lattice Boltzmann model has been demonstrated as a special
discrete scheme of the Boltzmann equation. Due to this intrinsic
kinetic nature, the LBM has been recognized as one of the prom-
ising alternative CFD methods for problems involving mesoscopic/
microscopic dynamics. In recent years, the LBM has been widely
used in a large variety of scientific researches and engineering
applications, such as multiphase and multicomponent fluids [1,2],
magnetohydrodynamics [3], reaction-diffusion systems [4], flows
through porous media [5], and other complex systems [6—9].

Generally, a complete lattice Boltzmann model consists of four
parts: an evolution equation of the distribution function, a poly-
nomial expansion of the equilibrium, an isotropic discrete particle
velocity set and a boundary condition of the distribution function.
For many flows, however, only the macroscopic fluid velocity and
density at the boundaries can be measured and determined. The
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corresponding distribution functions at the boundaries are usually
unknown and cannot be directly specified by experiments, causing
that a solid boundary condition reflecting the real dynamics of
particles at the boundaries is hard to give in the LBM. Moreover,
even when the distribution functions at the boundaries are fully
specified, the LBM still fails to directly use this information for some
problems, e.g. flows with a curved boundary, since the LBM carries
out the simulations only on the given rectangular lattice. In this
case, to close the lattice Boltzmann simulation, we need specify the
distribution functions at the nodes nearest the curved boundaries
based on the known boundary conditions. In this paper, we grossly
call the lattice nodes at the rectangular boundaries and the lattice
nodes nearest to the curved boundaries as the boundary nodes. In
the literatures, various boundary treatments have been developed
to determine the distribution functions on these boundary nodes.
One of the most often used boundary treatments is the bounce-
back rule [10,11], in which the distribution function of particles
streaming to the boundary nodes is set to be equal to those scat-
tering back to the original fluid nodes along the reverse direction. It
has been demonstrated that by simply placing the boundary in the
middle of the first two rows of lattice nodes, the bounce-back rule
can be a second-order approximation of the non-slip boundary
conditions of fluid velocity [12,13]. Recently, another boundary
treatment based on the known Maxwell’s diffusion reflection
boundary condition in kinetic theory has been also developed [14].
Unlike the bounce-back rule, this treatment assumes the particles
has completely lost their memory of the incoming streaming and
reflect diffusively from the wall. The diffusive reflection boundary
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Nomenclature

G discrete particle velocity in LBE model (m/s)

c lattice speed (m/s)

Cs speed of sound (m/s)

D cylinder diameter (m)

E average relative error of the velocity

fi distribution function associated with the ith discrete
velocity

£ equilibrium distribution function in discrete particle
velocity space

fed non-equilibrium distribution function in discrete
particle velocity space

Ma Mach number

p fluid pressure (Pa)

Re Reynolds number, U..D[v

Nt components of position vector for the coordinate
origin at the stagnant point of cylinder

t time (s)

U", V*  dimensionless components of fluid velocity, Uy/U.,
Uy/Ue

Uy, Uy  components of fluid velocity (m/s)

Us uniform inlet velocity (m/s)

u fluid velocity (m/s)

u(Xy) fluid velocity on the node at x,, (m/s)

X", Y" dimensionless components of Cartesian position
vector, x/D, y/D

X,y spatial position vector (m)

Xw lattice node on the solid side next to the boundary (m)

Xp intersection of the wall with lattice link (m)

Xf lattice node on the fluid side next to the boundary (m)

Greek symbols

A scale factor, [X¢ — Xp|/[Xr — Xw|

Ac critical scale factor

Acm the minimum value for a stable simulation

ot time step (s)

0x space step (m)

v kinematic viscosity of fluid (m?/s)

0 fluid density (kg/m?)

p(Xw) fluid density on the node at x,, (kg/m?)

T dimensionless relaxation time in LBGK

Wi weight coefficient

treatment gives a good prediction of the slip in microscale gas
flows. Besides those boundary treatments mimicking the particle
dynamics at the boundaries by some ad hoc assumptions, Chen
et al. [15] developed the other type of boundary treatments using
the conventional extrapolation method. He introduced an imagi-
nary layer of lattices inside the boundaries, and then extrapolated
the distribution functions inside flow region to those on this extra
layer. In each streaming-collision step, the extrapolated distribu-
tion functions on the extra layer are used to specify those on
the boundary nodes. The idea is of much importance to specify the
distribution functions at the boundary nodes by those in the
neighborhood using the extrapolation (or interpolation) since by
appropriate extrapolation/interpolation, we cannot only control
and improve the numerical performance of our boundary treat-
ment, but also gain much more flexibility for flows with complex
boundaries. In line with this idea, Filippova and Hanel [16]
combined the extrapolation scheme with the bounce-back
particle dynamics and developed an extrapolation bounce-back
scheme for flows with curved boundaries. Later Mei et al. [17]
modified such a scheme and applied it to simulations of channel
flow, cavity flow and flow around a column of cylinders.
However, it should be pointed out the extrapolation bounce-
back scheme is only suitable for simulations of steady flows.
Moreover, owing to its bounce-back feature, this scheme also fails
to approximate the macroscopic boundary conditions including the
gradients of temperature and velocity [16]. To eliminate these
limitations and extend the extrapolation-type boundary treat-
ments to simulations of more general flows, Guo et al. [18] devel-
oped a different non-equilibrium extrapolation method (NEM),
which does no longer depend on any prior assumption of the
underlying particle dynamics. Like that proposed by Chen et al.
[15], this extrapolation method first introduces an imaginary layer
of lattices inside the wall and then, decomposes corresponding
distribution functions at these fictions lattice nodes into the equi-
librium and non-equilibrium parts. For the equilibrium part, it is
evaluated the same as those at the internal nodes in the flow region
but the used fluid density and velocity are extrapolated by those at
the boundaries and in the neighboring fluid region. For the non-
equilibrium part, it is extrapolated by the non-equilibrium part of

the distribution functions at the nodes in the neighboring fluid
region. In simulation, the resulting extrapolated distribution func-
tions inside the walls will be used to determine the corresponding
distribution functions at the boundary nodes in the flow region
based on the lattice Boltzmann streaming-collision procedure. Such
a NEM is simple and robust, and suitable for simulations of flows
with curved boundaries. However, it should be also noted that
a numerical factor, i.e. the fraction of the intersected link in the fluid
region, A, is introduced in the NEM. When this factor A reaches
a critical values A, the extrapolations of both the equilibrium part
and non-equilibrium part will adopt different extrapolation
schemes from those with A < A.. It can thus be expected that
choosing different A.s may influence the numerical results, espe-
cially for flows with complex boundaries. To understand the effect
of A¢ on the numerical performance of lattice Boltzmann simula-
tion, in the present study, we apply the lattice Boltzmann method
with the NEM to simulations of flows around a cylinder and two
parallel-placed cylinders. By choosing different Acs, we test the
numerical accuracy and stability of the NEM.

In the rest of this work, we first introduce the LBM in Section 2.
In Section 3, the non-equilibrium extrapolation method for flows
with curved boundaries is briefly reviewed. Moreover, we
detailedly discuss the method determining the extrapolated nodes
within the solid wall. In Section 4, the simulations of flows around
a cylinder and two parallel-placed cylinders are carried out.
Numerical results are analyzed and discussed. Finally, the conclu-
sions are drawn in Section 5.

2. The lattice BGK model

In the lattice Boltzmann method, the most popular model is the
lattice Bhatnagar—Gross—Krook (BGK) model, which is a specific
numerical scheme of the Boltzmann equation with the BGK
approximation by discretizing the time and space and projecting
the continuous particle velocity space into an isotropic discrete
velocity set [19—23]. Without losing generality, in this work, we
take the two-dimensional nine-bit (D2Q9) model as an example,
whose evolution equation is [20,21]
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