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A B S T R A C T

Precision medicine relies on an increasing amount of heterogeneous data. Advances in radiation oncol-
ogy, through the use of CT Scan, dosimetry and imaging performed before each fraction, have generated
a considerable flow of data that needs to be integrated. In the same time, Electronic Health Records now
provide phenotypic profiles of large cohorts of patients that could be correlated to this information. In
this review, we describe methods that could be used to create integrative predictive models in radia-
tion oncology. Potential uses of machine learning methods such as support vector machine, artificial neural
networks, and deep learning are also discussed.

© 2016 Elsevier Ireland Ltd. All rights reserved.

Introduction

Level I evidence-based medicine relies on randomized con-
trolled trials designed for large population of patients. But the
increasing number of clinical and biological parameters that need
to be explored to achieve precision medicine makes it almost im-
possible to design dedicated trials [1]. New approaches are needed
for all subpopulations of patients. Clinicians need to use all the di-
agnostic tools (medical imaging, blood tests and genomics) in order
to decide the appropriate combination of treatments (radiothera-
py, chemotherapy, targeted therapy and immunotherapy). Each
patient has an individual set of molecular abnormalities responsi-
ble for their disease or correlated with treatment response and
clinical outcome. The concept of tailored treatments relies on iden-
tifying and leveraging these aberrations for each patient. This shift
to molecular oncology has driven cancer research in the last 25 years
and has allowed significant progress in poor-prognosis diseases such
as non-small cell lung cancer (through the use of EGFR inhibitors
[2]) or melanoma (through the use of immunotherapy [3]). But the
burden of variant mutations can involve up to several hundred genes
in a single tumor. Next-Generation Sequencing can be focused on
specific regions, on whole-exome (all coding genes are sequenced)
or whole-genome (all DNAs are sequenced). The same approach can
be used to study the transcriptome. In any case, exploring as many
genes as possible will be mandatory as we unravel the complexity

of the molecular circuits involved in primary or secondary treat-
ment resistance or radiation response [4]. The intricacy involved
makes it almost certainly impossible to create specific trials for each
and every case. It is traditionally considered that our cognitive ca-
pacity can integrate up to five factors in order to take a decision.
By 2020, a decision will rely on up to 10,000 parameters for a single
patient [5].

As sequencing costs have significantly decreased [6–8] and com-
puting power has steadily increased (Fig. 1), the only factor
preventing us from discovering factors influencing the disease’s
outcome is the lack of large phenotyped cohorts. The generaliza-
tion of Electronic Health Records (EHR) gives us a unique opportunity
to create adequate phenotypes. Data science has an obvious role in
the generation of models that could be created from large data-
bases to predict outcome and guide treatments.

Moreover, the similarity between clinical research patients and
routine care patients regarding comorbidities, severity, time before
initiation of treatment and tumor characteristics has been ques-
tioned [9]. A new paradigm of data driven methodologies reusing
routine healthcare data to provide decision support is emerging. To
quote I.S. Kohane, “Clinical decision support algorithms will be
derived entirely from data… The huge amount of data available will
make it possible to draw inferences from observations that will not
be encumbered by unknown confounding” [10].

Integrating such a large and heterogeneous amount of data is
in itself a challenge that must be overcome before we can actually
create accurate models. The objective of this review is to explain
the main informatics challenges in the implementation of a preci-
sion medicine program in radiation oncology and describe
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approaches to address these challenges. Wewill discuss themethods
available to create models predicting the outcome after radiother-
apy or chemoradiation.

Which data should be considered and how should they be
managed?

Lambin et al. have described in details the features that should
be considered and integrated into a predicting model [11]. They
include:

– Clinical features (patient performance status, grade and stage of
the tumor, blood test results, patient questionnaires).

– Treatment features: planned spatial and temporal dose distri-
bution, associated chemotherapy. For this, data could be extracted
directly from the record-and-verify software to be analyzed.

– Imaging features: tumor size and volume,metabolic uptake (more
globally included into the study field of “radiomics”).

– Molecular features: intrinsic radiosensitivity [12], hypoxia [13],
proliferation and normal tissue reaction [14]. In that part, genomic
studies play a key role to determine these characteristics.

Data collection and management

State of the art radiation oncology provides a clear digital rep-
resentation of the treatment performed. For each patient, we record
the radiation regimen that has actually been performed. For each
patient and treatment session, we know very well where photons
go in the body and, by definition, we already have it in a digital
format for every patient. Daily variability is also taken into account
by onboard imaging, so we know where the dose is actually deliv-
ered. These systems can give the temporal and spatial distribution
of the treatments performed. Data are prospectively collected for
every patient in the record-and-verify software in each depart-
ment. This highly digital nature lends itself to quantifying and
analyzing the care delivery process. The quality of data gathered
is far better than in most other fields of medicine. Extracting these
data to integrate it in clinical data warehouse (CDW) in hospitals
can be performed at different levels. Raw data provide detailed in-
formation on dose volume histograms, treatment volumes, time
between each fraction, overall treatment time, dose rate, and images
produced by onboard systems. Another approach that would consist
of extracting only the data that are considered relevant before in-
tegrating it into the CDW would greatly decrease the richness of
information and should be avoided [15].

Beyond the data described earlier, follow-up is very important
in radiation oncology andmedicine in general in order to detect tox-

icity. In that regard, online and mobile, but also wearable device
inputs should be encouraged. Patients would then be able to provide
detailed, real-time information on adverse events during and after
the treatment without having to wait for their next appointment
with the radiation oncologists. Several studies in that field have
already shown the interest of patient reported outcomes to improve
follow-up [16,17].

The volume of data that need to be collected and managed is
rapidly growing. Today, we can estimate that data for a single patient
would amount to 7 GB, including the raw genomic data that would
account for roughly 70% of it (Table 1). Health data security and ac-
cessibility is a major challenge for any institution. They should be
accessible with ease and velocity from anywhere, without com-
promising their safety. Remote access to the data requires that the
architecture takes into account high security constraints, includ-
ing a strong user authentication and methods that guarantee
traceability of all data processing steps. Relevant healthcare pro-
fessionals’ login procedures require scalable process with a significant
cost, but they should certainly not be overlooked [18]. Medical record
linkage and data anonymization are very often necessary steps to
provide data for research. They often require a trustworthy third
party that takes care of these procedures. In general, to provide
healthcare data for research, the data must be moved from the care
zone, where data are under the control of the trusted relationship
between physician and patient, to the none-care zone, where data
are under the control of special data governance bodies, to be
anonymized and made available for analysis.

Existing solutions to support the storing and access of care include
translational research platforms. These platforms are able to inte-
grate large data sets of clinical information with omics data [19].
Despite technological advances, some authors believe the in-
creases in data volume could be outstripping the hospitals’ ability
to cope with the demand for data storage [20]. One solution would
consist of managing these data asmost hospitals manage oldmedical
files, i.e. moving the oldest and biggest files to external storage. For
digital data, in order tomaintain fast and easy access, wewould need
tomove themost voluminous data to a secondary storage-optimized
platform, separate from the query platform. Fig. 2 shows a propos-
al for a system integrating data from the hospital and data directly
provided by the patients.

Use of ontologies for quality data extraction

Standardization in the fields and terms used in the EHR, treat-
ment procedures, and genomic annotations increase the quality and
comparability of the data used to create models. Diversity in these
features results in an almost impossible challenge to extract and
aggregate quality data. An ontology, i.e. a set of common con-
cepts, is a key component of any data collecting system and
predictive models. There are currently around 440 biomedical
ontologies. The most commonly used include SNOMED [21], the NCI
Thesaurus [22], CTC AE [23] and the UMLS meta-thesaurus [24].

Fig. 1. Whole Genome Sequencing (actual cost, gray line) and computer power (Moore
law, black line) costs.

Table 1
Data types and approximate sizes for a single patient.

Data type Format Approx.
size

Clinical features Text 10 MB
Blood tests Numbers 1 MB
Administrative ICD-10 codes 1 MB
Imaging data DICOM 450 MB
Radiation oncology data (planning
and on-board imaging)

DICOM, RT-DICOM 500 MB

Raw genomic data BAM: Position, base, quality 6 GB
Total 7.9 GB
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