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a  b  s  t  r  a  c  t

Dynamic  mechanistic  modelling  of cell  culture  is a key  tool  in  bioprocess  development  to  support  opti-
misation  and  risk  assessment.  However,  the  approach  is  underutilised  in the  bioprocess  industry  due  to
challenges  including  lack  of  accessible  tools  to support  a structured  approach,  the  difficulty  of  realising
computationally  tractable  (low  parameter)  yet  realistic  models,  and  the  specialised  skill  sets  required.  We
have  proposed  that these  issues  could  be partly  addressed  by developing  a  parsimonious  framework  com-
prising  a set  of model  building  blocks,  based  on  the ordinary  differential  equation  modelling  paradigm,
representing  common  cell  culture  dynamics  and modulation  thereof.  The  framework  is  designed  to  avoid
obvious  pathological  behaviours.  Further,  specific  model  instances  within  the  framework  can  be  simply
visualised  as a directed  graph  with vertices  representing  system  species,  dynamics  and  modulations,
and  arcs  representing  the  interactions  between  them.  The  directed  graph  can  be  extended  to  describe
the  timing  and  nature  of experimental  interventions.  A  visual  and  intuitive  route  to describing  models
with  an  associated  mathematical  framework  enables  realisation  in  a software  interface  and  integration
with  standard  mathematical  tools  such  as  those  for sensitivity  analysis  and  parameter  estimation.  Such
a framework  is  sufficient  to  represent  some  of  the simple  mechanisms  underpinning  bioprocesses  that
nonetheless  lead  to  highly  non-linear  and  counterintuitive  outcomes.  It also  has  a  relatively  low  learning
burden  for  users  without  formal  mathematical  training.  The  concept  could  be  extended  to  include,  for
example,  partial  differential  equation-based  approaches  to stochastic  or  spatially  complex  systems  built
up from  a  small  number  of  parametrically  parsimonious  and  well-behaved  building  blocks.

© 2018  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cell culture processes are a major element of manufacture in
many biologic and emerging cell-based therapies. The dynamics
of these processes, such as cell growth, consumption and produc-
tion rates, have long been recognised as important determinants of
process outcomes. For instance, in protein producing cell line cul-
tures, reduction of major nutrients and accumulation of metabolic
by-products such as ammonia and lactate can result in growth
inhibition, reduced culture viability, and altered product titre [1].
Evidence is accumulating that newer cell-based products proposed
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in the regenerative medicine field add further complexity. Cell-
released factors (identified or unidentified), metabolic substrate
availability, and metabolic by-products can have tissue specific
feedback relationships with lineage trajectory and growth rate, and
as such are likely to be highly product specific [2–4]. Each candi-
date process and product will require appropriate understanding,
description, and control of these dynamic relationships to achieve
product optimisation and robust process control [5,6].

Best practice of process development and optimisation, as artic-
ulated in structured approaches such as Quality by Design or Six
Sigma, has quantitative modelling at its heart [7]. In cell culture,
current models fall roughly into two camps, namely those that
empirically map  between process parameters and target outcomes
and those that consider the dynamics and mechanisms by which
process parameters affect process outcomes. Empirical mapping
treats the biological and experimental system as a “black box” and
thus provides limited process insight for risk assessment, extrapo-
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lation or hypothesis-based iterative development [8]. Further, due
to the complex and dynamic nature of the cell culture environment,
experimental design or manufacturing conditions optimised for
single time points or across time intervals often fail when consid-
ered over longer relevant time-courses. Conversely, a mechanistic
approach entails the formulation and evaluation of hypotheses con-
cerning the dynamics of the culture in terms of their consequences
for culture trajectory. Mathematical and mechanistic formalisation
of hypotheses concerning these dynamics represents the starting
point effectively to link short time-scale dynamics with their con-
sequences over a longer time-scale. There is increasing awareness,
particularly within cell therapy, that such process insight is criti-
cal in diminishing risk in transfer to manufacture and in delivering
consistent product quality [9,10].

Low parameter-count approaches of the empirical paradigm
(exemplified by Design of Experiments) have been used exten-
sively to improve cell based manufacture processes, including for
cell therapies, facilitated by low-barrier and generic software tools
for experimental design and analysis [11–13]. The mechanistic
approach is employed by specialist groups within academia to
elucidate biological systems and process knowledge, but appli-
cation within commercial process development remains sporadic
[14–16]. Consequently the hypothesis-testing power, and precision
of hypothesis expression that mechanistic modelling enables, is sig-
nificantly under-utilised, particularly early in product and process
development when teams or companies are small and resources
relatively limited. Reasons for restricted application include lack of
low barrier turnkey tools and standardised workflows necessitating
a diverse skill-set covering both biological hypothesis development
and specialist modelling techniques. The tendency therefore is for
the majority of biological experimentation and hypothesis testing,
or of mathematical modelling of biological systems, to proceed in
isolation, or in a poorly integrated manner. The requirement to
address such deficiencies has been recognised in several technol-
ogy road-mapping exercises such as that conducted by the National
Cell Manufacturing Consortium [17].

We aim to facilitate wider application of dynamic mecha-
nistic modelling by addressing the challenges that prevent the
development of a broadly accessible turnkey software package for
mechanistic cell process modelling. Such a package must (i) min-
imise mathematical knowledge required for model development
(ii) enable precise articulation and interdisciplinary communica-
tion of population-dynamic hypotheses (iii) support development
of relevant and robust mathematical models and (iv) allow link-
ing of models to data from complex time-course experimentation
for verification. To achieve this we aimed to develop a conceptual
framework and mathematical formulation that could facilitate the
expression of a broad range of biological phenomena in a consis-
tent form and that could be conveniently expressed within a visual
(software) interface to provide an intuitive bridge between bio-
logical description of a dynamic system and precise mathematical
expression thereof.

2. Methods

2.1. Model framework development

Many complex time-courses can be efficiently described within
an ordinary differential equation (ODE) modelling paradigm, in
which the evolution of the system is described in terms of the
dependency of the rates of change of the system variables on
other system variables or additional temporal factors. Within this
paradigm, mathematical expression of biological dynamics con-
ventionally uses established functions, such as logistic and Monod
(for macroscopic kinetics) and flux equations (microscopic kinet-

ics) [16,18]. However, such formulations often conflate multiple
mechanisms, for example, in terms of growth and saturation, which
prevents straightforward reconfiguration to express a full range of
dynamic hypotheses. To address this we  developed a modelling
approach in which - by restricting the repertoire of mathematical
forms to a set of carefully chosen building blocks - the constituents
of a system, and the relationships between them can be expressed
intuitively, the former in terms of natural language, and the latter
in terms of directed graphs (digraphs). A digraph constitutes a sys-
tem of asymmetric relationships in which directional arrows (arcs)
define the relationships between points (vertices) that represent
the elements in an organisational structure. A secondary benefit of
a limited ODE approach is that it can be designed to ensure that ill-
formed or badly behaved model formulations are naturally avoided
(for example, those that would, under certain conditions, predict a
negative quantity of a necessarily positive system constituent), in
contrast to a naïve deployment of, for instance, flux equations.

From the perspective of a population or sub-population of cells
the bulk of these dynamics can be characterised as:

• population growth due to cell division
• population decline due to cell death, and
• concomitant decline of one population and growth of a second

due to interconversion of cells from one to the other, for example,
due to a phenotype change.

On an instantaneous time-frame, these dynamics can be approx-
imated as being essentially additive. In terms of the primary
modulators of population dynamics e.g. non-cell species within
the media or direct cell feedback, the number of general forms is
similarly small:

• production of a species by cells (such as a by-product of metabolic
activity or a signalling molecule such as a cytokine)

• consumption (or destruction) of a species by the cells
• species decay, and
• conversion from one species to another, for example due to cell

activity.

In the absence of further data during model formulation, each of
these dynamics can be assumed to take the simplest possible form
that avoids pathologies in the model, namely:

• cell growth:

dX

dt
= rX

where X is the cell density and r the (positive) specific growth rate

• decline of cell population or species:

dX

dt
= −rX

where X is cell density or species concentration and r the (positive)
specific decay rate

• interconversion of population or species:

dX

dt
= −rX

And

dY

dt
= rX
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