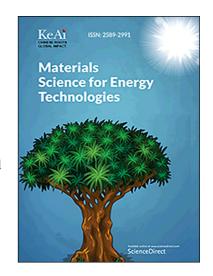
Accepted Manuscript

Biocompatible Mediated Bioanode prepared by using Poly(3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT:PSS) and Sulfonated Graphene Oxide Integrated Enzyme For Biofuel Cells Applications

Beenish, Inamuddin, Mohd Imran Ahamed, Abdullah M. Asiri, Khalid Ahmed Alamrey


PII: S2589-2991(18)30003-X

DOI: https://doi.org/10.1016/j.mset.2018.03.003

Reference: MSET 3

To appear in: Materials Science for Energy Technologies

Received Date: 8 February 2018 Revised Date: 18 March 2018 Accepted Date: 18 March 2018

Please cite this article as: Beenish, Inamuddin, M.I. Ahamed, A.M. Asiri, K.A. Alamrey, Biocompatible Mediated Bioanode prepared by using Poly(3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT:PSS) and Sulfonated Graphene Oxide Integrated Enzyme For Biofuel Cells Applications, *Materials Science for Energy Technologies* (2018), doi: https://doi.org/10.1016/j.mset.2018.03.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Biocompatible Mediated Bioanode prepared by using Poly(3,4-ethylene dioxythiophene)

poly(styrene sulfonate) (PEDOT:PSS) and Sulfonated Graphene Oxide Integrated Enzyme

For Biofuel Cells Applications

Beenish¹· Inamuddin^{1,3,4*}, Mohd Imran Ahamed², Abdullah M. Asiri^{3,4}, Khalid Ahmed Alamrey³

¹Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India

²Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

³Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

⁴Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University,
P. O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

In this study, a bioanode for biofuel cells was produced using a composite of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) and sulfonated graphene oxide (SGO) wherein SGO shows synergistic impact by going about as charge adjusting dopant and a conductive filler. The conducting polymer PEDOT:PSS alongside SGO fill in as a way to encourage electron transfer and co-immobilize the enzyme in the meantime. Extensive surface area controlled by SGO prompts high catalyst stacking and empowers to enhance the current density of the fuel cells. Ferritin additionally upgrades the transportation of electrons by going about as a redox mediator that effectively transfers electrons from enzyme to the conducting support. Examination of electrochemical execution of modified bioanode in presence of glucose was completed by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) at various scan

Download English Version:

https://daneshyari.com/en/article/6482587

Download Persian Version:

https://daneshyari.com/article/6482587

<u>Daneshyari.com</u>