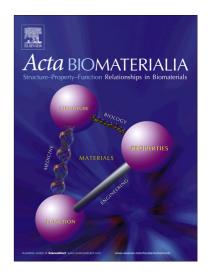
Accepted Manuscript

Full length article

The three-dimensional arrangement of the mineralized collagen fibers in elephant ivory and its relation to mechanical and optical properties

M. Albéric, A. Gourrier, W. Wagermaier, P. Fratzl, I. Reiche


PII: S1742-7061(18)30086-2

DOI: https://doi.org/10.1016/j.actbio.2018.02.016

Reference: ACTBIO 5321

To appear in: Acta Biomaterialia

Received Date: 16 November 2017 Revised Date: 15 February 2018 Accepted Date: 15 February 2018

Please cite this article as: Albéric, M., Gourrier, A., Wagermaier, W., Fratzl, P., Reiche, I., The three-dimensional arrangement of the mineralized collagen fibers in elephant ivory and its relation to mechanical and optical properties, *Acta Biomaterialia* (2018), doi: https://doi.org/10.1016/j.actbio.2018.02.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The three-dimensional arrangement of the mineralized collagen fibers in elephant ivory and its relation to mechanical and optical properties

Albéric M.¹, Gourrier A.^{2,3}, Wagermaier W.¹, Fratzl P.¹ and Reiche I.^{1,4-6*}

- ¹ Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
- ² Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
- ³ European Synchrotron Radiation Facility, Grenoble, France
- ⁴ Rathgen-Forschungslabor, Staatliche Museen zu Berlin, Stiftung Preußischer Kulturbesitz, Berlin, Germany
- ⁵present address: Chimie-Paristech, PSL, Research University, CNRS, Institut de Recherche Chimie-Paris (IRCP), UMR 8247, F-75005 Paris, France
- ⁶ present address: Centre de recherche et de restauration des musées de France (C2RMF), F-75001 Paris, France
- * Corresponding author: I.Reiche@smb.spk-berlin.de/ina.reiche@chimie-paristech.fr (+49-30-266 427101/00)

ABSTRACT

Elephant tusks are composed of dentin or ivory, a hierarchical and composite biological material made of mineralized collagen fibers (MCF). The specific arrangement of the MCF is believed to be responsible for the optical and mechanical properties of the tusks. Especially the MCF organization likely contributes to the formation of the bright and dark checkerboard pattern observed on polished sections of tusks (Schreger pattern). Yet, the precise structural origin of this optical motif is still controversial. We hereby address this issue using complementary analytical methods (small and wide angle X-ray scattering, cross-polarized light microscopy and scanning electron microscopy) on elephant ivory samples and show that MCF orientation in ivory varies from the outer to the inner part of the tusk. An external cohesive layer of MCF with fiber direction perpendicular to the tusk axis wraps the mid-dentin region, where the MCF are oriented mainly along the tusk axis and arranged in plywood-like structure with fiber orientations

Download English Version:

https://daneshyari.com/en/article/6482929

Download Persian Version:

https://daneshyari.com/article/6482929

<u>Daneshyari.com</u>