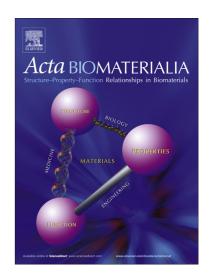
Accepted Manuscript

Full length article

Regulation of fibrotic changes by the synergistic effects of cytokines, dimensionality and matrix: towards the development of an in vitro human dermal hypertrophic scar model

Shikha Chawla, Sourabh Ghosh


PII: S1742-7061(18)30004-7

DOI: https://doi.org/10.1016/j.actbio.2018.01.002

Reference: ACTBIO 5257

To appear in: Acta Biomaterialia

Received Date: 19 September 2017 Revised Date: 23 December 2017 Accepted Date: 6 January 2018

Please cite this article as: Chawla, S., Ghosh, S., Regulation of fibrotic changes by the synergistic effects of cytokines, dimensionality and matrix: towards the development of an in vitro human dermal hypertrophic scar model, *Acta Biomaterialia* (2018), doi: https://doi.org/10.1016/j.actbio.2018.01.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Regulation of fibrotic changes by the synergistic effects of cytokines, dimensionality and matrix: towards the development of an in vitro human dermal hypertrophic scar model

Shikha Chawla, Sourabh Ghosh*

Department of Textile Technology, Indian Institute of Technology Delhi, India

*Corresponding author: Sourabh Ghosh, Department of Textile Technology, Indian Institute of Technology Delhi, India, sghosh08@textile.iitd.ac.in

Abstract

Current therapeutic strategies to reduce scarring in full thickness skin defect offer limited success due to poor understanding of scar tissue formation and the underlying signaling pathways. There is an urgent need to develop human cell based in vitro scar tissue models as animal testing is associated with ethical and logistic complications and interspecies variations. Pro-inflammatory cytokines play critical role in regulating scar development through complex interplay and interaction with the ECM and corresponding signaling pathways. In this context, we assessed the responses of cultured fibroblasts with respect to their differentiation into myofibroblasts using optimised cytokines (TGF-β1, IL-6 and IL-8) for scar formation in 2D (tissue culture plate, collagen type I coated plate) vs 3D collagen type I gel based constructs. We attempted to deduce the role of dimensionality of cell culture matrix in modulating differentiation, function and phenotype of cultured fibroblasts. Validation of the developed model showed similarity to etiology and pathophysiology of *in vivo* hypertrophic scar with respect to several features: 1) transition of fibroblasts to myofibroblasts with convincing expression of α -SMA stress fibers; 2) contraction; 3) excessive collagen and fibronectin secretion; 4) expression of fibrotic ECM proteins (SPARC and Tenascin); 5) low MMP secretion. Most importantly, we elucidated the involvement of TGF-β/SMAD and Wnt/β-catenin pathways in developing in vitro dermal scar. Hence, this relatively simple in vitro human scar tissue equivalent may serve as an alternative for testing and designing of novel therapeutics and help in extending our understanding of the complex interplay of cytokines and related dermal scar specific signaling.

Download English Version:

https://daneshyari.com/en/article/6483022

Download Persian Version:

https://daneshyari.com/article/6483022

<u>Daneshyari.com</u>