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Many important biomaterials are composed of multiple layers of networked fibers. While there is a grow-
ing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical
foundation for such simulations has yet to be firmly established. Moreover, correctly identifying and
matching key geometric features is a critically important first step for performing reliable mechanical
simulations. The present work addresses these issues in two ways. First, using methods of geometric
probability, we develop theoretical estimates for the mean linear and areal fiber intersection densities
for 2-D fibrous networks. These densities are expressed in terms of the fiber density and the orientation
distribution function, both of which are relatively easy-to-measure properties. Secondly, we develop a
random walk algorithm for geometric simulation of 2-D fibrous networks which can accurately repro-
duce the prescribed fiber density and orientation distribution function. Furthermore, the linear and areal
fiber intersection densities obtained with the algorithm are in agreement with the theoretical estimates.
Both theoretical and computational results are compared with those obtained by post-processing of scan-
ning electron microscope images of actual scaffolds. These comparisons reveal difficulties inherent to
resolving fine details of multilayered fibrous networks. The methods provided herein can provide a
rational means to define and generate key geometric features from experimentally measured or pre-
scribed scaffold structural data.
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1. Introduction

Many important biomaterials are composed of multiple layers
of networked fibers. Elastomeric fibrous scaffolds used in engineer-
ing soft tissues are a prime example [1]. Since soft tissues undergo
large deformations [2,3], the constituent fibers must have elasto-
meric characteristics and undergo large macroscopic deformations
as aresult of large rotations and strains. These characteristics allow
the scaffolds to duplicate many of the salient characteristics of the
soft tissues they are intended to replace [4]. The scaffolds are also
expected to have multiple functions, including facilitation of cell
attachment and support of de novo tissue synthesis and stress
transfer [1]. To meet these multifaceted demands, one must
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develop a fundamental understanding of the underlying physical
processes occurring within the scaffolds across multiple scales [1].
Currently, electrospinning is a common process for elastomeric
scaffold fabrication [1,5]. This process results in very long, often
undulated “continuous” fibers that form dense networks with lay-
ered structures. Other approaches focus on reconstituted collagen
or fibrin gels [6]. Regardless of the methodology used to create
the scaffold structures, it is well established that the fiber geome-
try significantly influences the macroscopic mechanical response
[7,8]. Accordingly, there has been a considerable amount of effort
devoted to characterization of the fibrous geometry, with the focus
on measuring an in-plane fiber orientation density function and
establishing its relations with mechanical anisotropy [5,9-13].
Generally, current approaches to simulating fibrous network
geometries are based on: (i) generating Voronoi diagrams [14];
(ii) generating assemblies of straight fibers with prescribed orien-
tations [15]; (iii) using method (ii) to generate a network that is
used as the initial state of a dynamics simulation in which the fiber
positions and orientations evolve, and crosslinks are formed [16];
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and (iv) direct post-processing of scaffold images [10]. While all
four approaches have been successfully used for predicting the
macroscopic mechanical response in terms of fiber stiffness and
volume fraction, the generated geometries simply do not consis-
tently resemble the actual ones and involve somewhat subjective,
empirical rules. Most importantly, the geometric parameters nec-
essary for modeling and simulation of other aspects of mechanical
behavior of fibrous networks are yet to be defined.

Herein, we rely on methods of geometric probability to develop
theoretical estimates for the mean linear and areal fiber intersec-
tion densities for 2-D fibrous networks. These densities are
expressed in terms of the fiber density and the orientation distri-
bution function, both of which are relatively easy-to-measure
properties. Secondly, we develop a 2-D random walk algorithm
capable of generating realistic geometric models of fibrous
network layers. This algorithm can greatly benefit further studies
concerned with micromechanical modeling by generating geome-
tries that resemble actual ones. We further present simulation
results aimed at validating the assumptions underlying the
theoretical development, testing the algorithm performance and
establishing the minimum specimen size necessary for capturing
macroscopic properties. Finally, we show how the theory and sim-
ulations can complement the use of experimental observations to
more accurately determine important features of the material’s
microstructural geometry.

2. Methods

2.1. Derivation of key geometric relationships for planar fibrous
networks

The materials considered in the present work can be idealized
as a set of multiple, connected planar 2-D networks of long, curved
fibers. This has been shown to be a very good idealization for elec-
trospun polyester urethane urea (ES PEUU) scaffolds (Fig. 1), as
well as many other important biomaterials. Our approach is thus
restricted to layered networks, which can be treated as an assem-
bly of 2-D monolayers. We introduce basic quantities that charac-
terize 2-D fibrous geometries, the linear and areal intersection
densities for planar fibrous networks, and develop simple expres-
sions in terms of the fiber density and orientation density function.
These quantities allow estimation of a characteristic segment
length between neighboring fiber intersections. The derived
expressions significantly simplify the task of microstructural
characterization, since the intersection densities are difficult to
measure directly.

We begin with a simplified model, in which a fibrous layer is
represented as a 2-D network the building blocks of which are
short, straight line segments. First, we establish some results for
such networks of disjoint segments, then we extend those results
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Fig. 1. Scanning electron microscope image of the top layer of an ES PEUU scaffold
[10]. The fiber diameter is approximately 1 micron.

to networks of long, curved fibers composed of connected seg-
ments. In the process, we adopt minimal assumptions required
to establish simple expressions for the linear and areal intersection
densities in terms of the linear fiber density and the orientation
density function (ODF). The mathematical problem considered in
this section can be classified as a generalization of the classical Buf-
fon’s needle problem [17]. In this problem, a needle of known
length is dropped onto a floor composed of many parallel floor
boards of known width, and we seek the probability that the nee-
dle lands on a boundary line between the adjacent floorboards.
This problem represents the beginning of the field of geometric
probability [18].

Let us consider a domain in Euclidean space Q  R?, the area of
which is equal to A. The domain contains m straight line segments,
each of length s. We suppose that m > 1 and assign to the seg-
ments an ODF f(¢) such that the probability that any given seg-
ment has an orientation between ¢ and ¢ + A is Ap = f(p)Ap.
The ODF is periodic, such that f(¢) = f(¢ + n), and therefore the
angle ¢ can be restricted to the interval [0, 7). The segment centers
are uniformly distributed in Q following a Poisson’s process [19]. It
is expedient to assume that Q is a unit cell of a periodic structure.
Accordingly, the segments protruding outside of Q can re-enter it
from the opposite side.

Let us consider a randomly placed test straight line segment 7
of length L, cutting through some of the m segments in Q and ori-
ented at an angle ¢. Then a segment S, oriented at an angle
between ¢’ and ¢’ + A¢’, intersects 7 if and only if the center of
S is located inside the parallelogram 7 with edges of length L;
and s, and angle | — ¢’| (Fig. 2).

Since the area of P is equal to sL;sin|¢ — ¢'|, the probability
that S is oriented at an angle between ¢’ and ¢’ + A¢’, and inter-
sects 7 is equal to
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Accordingly, the probability that any segment, regardless of its
orientation, intersects 7 is equal to
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Let n denote the number of intersections along 7; the corre-
sponding probability density function is denoted by g(n). Since
the position and orientation of each segment are independent of
the positions and orientations of all the other segments, the inter-
sections with 7" are independent events. This is a classical setting
leading to the binomial distribution with the probability density
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Fig. 2. An arbitrary segment S having length s and orientation angle ¢’ intersects
the test segment 7 having length L; and orientation angle ¢ if its center lies within
the parallelogram P designated by the dashed lines.
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