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a  b  s  t  r  a  c  t

Kinetic  modeling  is a key  aspect  of systems  biology  with  biotechnological  applications.  However,  a  lim-
itation of building  kinetic  models  of metabolism  (particularly  from  stoichiometric  reconstructions  of
metabolic  networks)  is that  they  often  ignore  the  allosteric  regulators.  This  can  cause  discrepancies  in
the  model  predictions.  In this  paper,  we  derived  an  approximated  lin-log  ODE  model  of  the  Escherichia
coli  central  carbon  metabolism,  with  and without  metabolite-enzyme  regulators.  Next,  we analyzed  the
influence  of incorporating  this  level  of  metabolite-enzyme  interactions  in the metabolic  network  by  per-
forming several  in  silico  single-gene  knockouts  and  enzyme  under-/over-expression  changes.  Through
comparing  these  model  predictions  with  those  generated  with  a reference  mechanistic  kinetic  model
for  E.  coli,  it is shown  that  including  of allosteric  regulation  affects  the  flux  control  patterns  over  serine
production  and reveals  more  details  of  the  model  behavior  in a general  sense.  The  present  work  demon-
strates  that  the  regulatory  (allosteric)  structure  in  metabolic  networks  plays  an  essential  role  to  further
improve  kinetic  model  prediction  capabilities.  The  incorporation  of  allosteric  regulation  interactions  in
building  a kinetic  model  can  lead  to different  hypotheses  in  order  to  suggest  enzyme  targets  for strain
design  through  metabolic  engineering.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The ultimate goal of Systems Biology is to explain and quan-
titatively predict the dynamic behavior of complex systems, by
combining theory, simulation and laboratory experiments [1].
Metabolic Engineering is one of the fields where this perspective
has proven useful through the optimization of relevant industrial
strains under different perturbations for the optimization of the
production of compounds of industrial interest (see for example
Park and Lee, [2]). To achieve this goal, mathematical models of cel-
lular metabolism have become an important tool for performing in
silico experiments.

The mathematical models that are usually used in metabolic
engineering can be grouped into stoichiometric and kinetic [3–5].
The stoichiometric metabolic models are based on network topol-
ogy, thermodynamic and enzyme capacity constraints and can
be based on reconstructions from genome-scale data [6]. The
simulations with these models are performed under a steady-
state assumption using constraint-based methods like Flux Balance
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Analysis (FBA) [7]. Another approach, called metabolic flux analy-
sis (MFA), also assumes a steady-state condition and provides a
flux distribution without the need of kinetic information [8]. How-
ever, the dynamic behavior of the system cannot be captured and
in general the effects of regulatory mechanisms are not considered.

The traditional detailed kinetic models, on the other hand, allow
one to numerically simulate the dynamic behavior of the system
over time in response to changes in specific cellular components or
environmental parameters. They also allow one to perform other
analyses such as Metabolic Control Analysis (MCA) [9] and opti-
mal  re-design of biological systems [10]. For decades, non-linear
ordinary differential equations (ODE’s) have been the most pre-
dominant dynamic modeling techniques for metabolic systems
[11]. They require a priori knowledge on the network structure and
a large amount of experimental information, such as initial concen-
tration of metabolites, several kinetic parameters and reaction rate
laws.

Kinetic models have been used for a large variety of applica-
tions including the estimation of optimal drug concentrations
[12] and rational strain design of metabolic systems [56].
Recently, kinetic models with a significantly large number
of reactions have been developed for processes like the cen-
tral metabolism in Escherichia coli [13], glycolysis in lactic
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Nomenclature

Metabolites
Gluc.Ext Glucose extracellular
g1p Glucose-1-phosphate
g6p Glucose-6-phosphate
pep Phosphoenolpyruvate
pyr Pyruvate
6pg 6-Phosphogluconate
f6p Fructose-6-phosphate
xyl5p Xylulose-5-phosphate
sed7p Sedoheptulose-7-phosphate
pgp 1,3-Diphosphoenolpyruvate
e4p erythrose-4-phosphate
gap Glyceraldehyde-3-phosphate
dhap Dihydroxyacetonephosphate
3 pg 3-Phosphoglycerate;
2 pg 2-Phosphoglycerate
ribu5p Ribulose-5-phosphate
rib5p Ribose-5-phosphate
fdp Fructose-1,6-bisphosphate
atp Adenosintriphosphate
adp Adenosindiphosphate
amp  Adenosinmonophosphate
nadp Diphosphopyridindinucleotide-phosphate oxidized
nadph Diphosphopyridindinucleotide-phosphate reduced
nad Diphosphopyridindinucleotide oxidized
nadh Diphosphopyridindinucleotide reduced
oxa Oxalate
akg Alpha-ketoglutarate
cit Citrate
succi-CoA Succinyl-CoA
asp Aspartate
mal  Malate
fum Fumarate
cit Citrate
succ Succinate
pi Phosphate
oaa Oxaloacetate
glycp Glycerol 3-phosphate
f1p Fructose-1-phosphate

Reactions
PTS Phoshotransferase system
PGI Glucose-6-phosphate isomerase
PFK Phosphofrutokinase
ALDO Aldolase
TIS Triosephosphate isomerise
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
PGK Phsphoglycerate kinase
PGluMu Phosphoglycerate mutate
ENO Enolase
PK Pyruvate dehydrogenase
PDH Pyruvate dehydrogenase
PEPcarbox PEP carboxylase
PGM Phosphoglucomuatse
G1PAT Glucose-1-phosphate adenyltransferase
PPK Ribose phosphate pyrophoskinase
G3PDH Glycerol-3-phosphate dehydrogenase
SerSynth Serine synthesis
MurSynth Mureine synthesis
DAHPS DHAP synthase
TrpSynth Tryptophan synthesis

MetSynth Methionine synthesis
G6PDH Glucose-6-phosphate dehydrogenase
PGDH 6-Phosphogluconate dehydrogenase
Ru5p Ribulose phosphate epimerase
R5PI Ribose phosphate isomerise
TKa Transketolase A
TKb Transketolase B
TA Transaldolase
Synth1 Synthesis 1
Synth2 Synthesis 2
PPS Phosphoenolpyruvate synthetase
IDH Isocitrate dehydrogenase
LDH d-lactate dehydrogenase
PGCD Phosphoglycerate dehydrogenase

bacteria [14,15] or the pentose phosphate pathway in Sac-
charomyces cerevisiae [16]. A major challenge of such mechanistic
kinetic models, however, is that they possess many mechanistic
rate equations and free kinetic parameters [17]. Usually, for a large
number of enzymes, the in vivo kinetic parameters are unknown or
are available in the literature and databases only as general values
obtained by in vitro measurements by enzymologists because it is
very complex to measure the exact values [18]. These parameters
should be used with care by modelers, since enzymologists in
general work under optimal conditions for the enzyme and do
not perform the enzyme characterization under physiological
conditions [19], restricting their in silico applicability [20]. There-
fore, an alternative approach to address this issue has been the
use of a variety of in vivo data that usually includes time-course
measurements of metabolite concentrations in response to a
stimulus experiment [16,21,22]. These set of experimental data
are then used to fit the model output by minimizing an objective
function using a variety of nonlinear optimization algorithms [23].
Although these high-throughput data are becoming more and
more available, kinetic parameter estimation, reaction expression
and allosteric regulators of enzymes identification remain very
challenging tasks [24].

In order to overcome the gaps in stoichiometric and mech-
anistic kinetic models of metabolism various new “top-down”
approaches to move large-scale modeling from stoichiometric
models to the kinetic domain have started to emerge. For example,
in [25] the authors proposed an approximate modeling approach
composed of mass-action kinetics by integration of genomic, pro-
teomic, metabolomic and fluxomic measurements. The authors
also evaluate the impact of regulation by including the regulatory
interactions. However, one disadvantage of this approach is the
need of concentrations of a large number of reaction intermediates.
Another approach was  developed by Smallbone et al. [26,27] com-
bining two modeling approaches (approximated lin-log kinetics
and constraint-based modeling), in which the parameters (elastic-
ities) are given by the negative stoichiometric coefficient for the
respective metabolites and/or are derived from available kinetic
models within the BioModels database [28]. The reference steady-
state fluxes are estimated by the FBA approach. However, the
parameters estimated with these methodologies are rough approx-
imations and may  result in false predictions. In Miskovic and
Hatzimanikatis. [29,30] the authors propose an approach, known
as ORACLE (Optimization and Risk Analysis of Complex Living Enti-
ties). ORACLE is a framework based on MCA, that consists of a set of
successive computational procedures where biological data from
several sources (i.e., metabolomics, transcriptomics, fluxomics and
thermodynamics) are integrated. It generates a population of
large-scale kinetic models of cellular metabolism using a Monte
Carlo approach that satisfy thermodynamic and physico-chemical
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