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a  b  s  t  r  a  c  t

Compared  to  other  systems  biology  tools,  genomic  microarrays  represent  a mature  platform  that  allows
for facile  access  to the internal  biological  mechanisms  of  cell culture.  While  the  large  datasets  generated  by
microarrays  are  a  potential  goldmine  of  information,  ironically,  it is  their  large  size  that  also  makes  data-
mining  a cumbersome  task. This  can get  further  complicated  by  unavoidable  batch  effects  generated  when
different  datasets  are  combined.  Furthermore,  gene  expression  profiles  are  dependent  on combinations  of
various  complex  intracellular  events  and  as  such  identifying  the  signals  primarily  related  to the phenotype
of  interest  poses  a substantial  challenge.  In  this  study  we  addressed  these  issues  by  utilizing  a workflow
that  allows  adjustment  of  time-course  gene  expression  datasets  for batch  effects  and  incorporates  the
use of  sparse  partial  least  squares  analysis  to identify  specific  genes  of interest.  We  were  able  to  identify  a
set  of relevant  genes  that displayed  a  strong  correlation  with  cell  growth  in  fed-batch  bioreactors  under
different  nutrient  compositions.  By  conducting  further  biological  network  analysis,  we  identified  four
transcriptional  regulators,  namely  ATP7B,  SREBP1,  SCAP  and  INSIG2  that  are  responsible  for  regulation  of
these  genes  and  are  likely  important  drivers  for cell  growth  differences  in  response  to change  in  nutrient
composition.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Mammalian cell culture remains the major route of production
for protein-based therapeutics currently in the market or under
development [1–3]. This is mainly due to the superior capacity of
mammalian cells to process complex proteins and carry out post-
translational modifications that are suitable for use in humans [4].
Since its first implementation, mammalian cell culture has evolved
considerably with significant improvements attributable to the
advances made in cell line engineering, plasmid design, protein
engineering, clone selection and process optimization approaches
[5,6]. Most biotech companies choose to operate bioreactors in
fed-batch mode due to the simplicity of fed-batch operation as com-
pared to continuous culture [5,7]; this means however that the cell
culture microenvironment varies throughout the duration of the
culture due to changes in nutrient composition. As a consequence of
the constantly changing environment, cell culture dynamics could
have a significant impact on the performance of fed-batch culture.
While a wealth of empirical knowledge has been generated over
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time, there still exists a significant gap in the mechanistic under-
standing of the role that varying nutrient concentrations play in
driving the underlying cell biology during cell culture in fed-batch
bioreactors [1,8]. In this study, we demonstrate how we  can help
address this gap by correlating changes in cell biology to changes
in observed cell growth in fed-batch bioreactors.

With recent developments in systems biology, new tools are
becoming available that can enable rational understanding of how
changes in process parameters such as nutrient composition may
impact cell culture performance [8]. The mature field of microar-
ray analysis provides one such avenue that can be used to easily
generate time-course profiles for mRNA expression in fed-batch
bioreactors [8–10]. However, there are some technical hurdles that
warrant the use of specialized statistical methods before relevant
information can be extracted from microarray data. For instance,
the number of genes in the dataset (p) almost always greatly
exceeds the number of total biological observations (n), thus lead-
ing to the issue of high dimensionality [11]. As a result, methods
such as linear regression are unsuitable to analyze such data [12].
Also, gene expression profiles are not independent and are usu-
ally covariant with expression of other related genes, which leads
to the other issue of multicollinearity [13]. One important strat-
egy to address both the high-dimensionality and multicollinearity
problems is to use dimension reduction methods, such as principal
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component analysis (PCA) and partial least squares (PLS) [9,14].
These approaches reduce dimensionality by replacing the large
number of predictors (genes) with just a few significant principal
components that capture the major trends in the data. Further-
more, the principal components are able to group variables that
are highly correlated, thus addressing the multicollinearity issue
[15]. However, these approaches do not lead to a reduction in
the number of predictors (genes) in the dataset. Since microar-
rays yield information on several thousand expressed genes in the
cells, it is especially difficult to identify genes of interest in context
of the phenotype under consideration [9,15]. In order to address
this, methods that allow for selection of relevant predictors (genes)
within the dataset have been proposed. For example, the selection
of relevant predictors which is also referred to as implementa-
tion of ‘sparsity’, can be imposed on the dataset by using the L1
penalty, thus allowing for selection of relevant variables [16]. Both
the L1 and L2 penalties have been incorporated into the frame-
work of traditional dimension reduction methods to create sparse
principal component analysis (SPCA) [17] and sparse partial least
squares (SPLS) [13]. Both of these approaches are able to address the
high-dimensionality and multicollinearity issues in gene expres-
sion datasets while simultaneously selecting for just the relevant
genes. Of the two, SPLS is a supervised algorithm, and hence addi-
tionally capable of selecting for those predictors (genes) that are
correlated to the response (phenotype) of interest while discarding
the non-relevant predictors. It is also computationally inexpensive
to execute and in simulation studies was shown to outperform
other comparable statistical methods such as elastic net [13,15].
In addition to selection of an appropriate algorithm, there exist
other issues related to microarrays such as batch-to-batch vari-
ability [18–20]. In this study, we discuss the use of a workflow that
corrects for batch-to-batch variability in microarray data and incor-
porates SPLS for the analysis of time-course gene expression data
generated from fed-batch bioreactors. Using this workflow we were
able to identify specific biological pathways that had a strong corre-
lation with cell growth across several nutrient compositions. This
information can be extremely useful to understand the role that
individual nutrients play to influence the underlying cell biology.

2. Materials and methods

2.1. Growth of cells in bioreactors and sampling

This study utilized a clonal cell line that was generated from NS0
host cells transfected with a heterologous gene to enable secretion
of a monoclonal antibody. The clonal cell line was expanded using a
proprietary growth medium in baffled shake flasks incubated on an
agitated plate in a humidified incubator set at 37 ◦C with an over-
lay of 6% carbon dioxide for buffering. Once enough culture was
obtained, the cells were used to inoculate bench-top bioreactors
that were set at 37 ◦C. The pH of the bioreactors was controlled
between 7.1 and 7.3 by use of sodium carbonate (base) and carbon
dioxide (acid) additions. The dissolved oxygen level was main-
tained at 76 mm Hg throughout the run by supplementing oxygen
using a combination of air and oxygen sparge in the bioreactors.
The cultures were allowed to run for 14 days with pre-scheduled
intermittent addition of nutrient feeds, as well as supplementation
of glucose in the cultures as required. Depending on the condition,
one of three feed schemes was implemented during these runs.
The three feed schemes differed primarily in nutrient composition.
A platform in-house proprietary nutrient composition was  used for
feed scheme 1. Feed scheme 2 utilized a more concentrated version
of feed 1. Feed scheme 3 utilized a feed that had similar distri-
bution of most nutrients as in feed 2, with the exception of key
amino acids. While the total molar content for amino acids was

Fig. 1. Gene expression data analysis workflow used in this study.

constant between feed schemes 2 and 3, feed 3 had increased lev-
els of asparagine, aspartic acid, arginine and glutamine and reduced
levels of isoleucine, leucine, cysteine and proline when compared
to feed scheme 2. Samples were extracted from the bioreactors on
a routine basis and analyzed for cell growth using Cedex (Roche
Diagnostics Corporation, Indianapolis, IN) cell counters. Cell pellets
were also collected in order to generate mRNA for use in microar-
rays. Approximately 2 ml  of these samples from the bioreactors
were centrifuged and decanted to remove the supernatant. The cell
pellets, which consisted of anywhere from 4 to 100 million cells
depending on culture day and condition, were then snap-frozen on
dry ice and immediately transferred to −80 ◦C storage until further
use.

2.2. Generation of microarray data

Frozen cells were lysed and RNA was  extracted using the Qia-
gen RNeasy Mini kit (Qiagen, Hilden, Germany) following the
manufacturers’ protocol. RNA concentration was determined spec-
trophotometrically on a NanoDrop 2000 (Thermo Fisher Scientific,
Waltham, MA)  and quality of the intact RNA was assessed on a
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) using the
RNA 6000 Nano LabChip (Agilent Technologies, Santa Clara, CA).
Sharp bands were obtained for 28S and 18S RNA at the expected
sizes with no evident degradation as indicated by the RNA Integrity
(RIN) score [21], which ranged from 8 to 10 for all samples (see Sup-
plementary Fig. 1 for an example of the RNA  quality assessment
data). No correlation was  found between the duration of storage of
the cell pellets and the RIN scores, thus confirming that cell pellet
handling and storage had minimal impact on RNA quality. Gener-
ation of biotin-labeled aRNA amplified from 3 �g of total RNA was
accomplished with the Invitrogen Superscript Double-strand cDNA
kit (Life Technologies, Carlsbad, CA) and Affymetrix GeneChip IVT
labeling kit (Affymetrix, Santa Clara, CA) following the manufac-
turers’ protocols. Fifteen micrograms of each biotin-labeled aRNA
was fragmented and hybridized on Affymetrix Mouse Genome
2.0 GeneChip arrays (Affymetrix, Santa Clara, CA). All GeneChip
washing, staining, and scanning procedures were performed with
Affymetrix standard equipment following the manufacturers’ pro-
tocols. Data capture and array quality assessments were performed
with the GeneChip Operating Software (GCOS) tool (Affymetrix,
Santa Clara, CA).

2.3. Gene expression data analysis

The workflow used for analysis of the gene expression data
obtained is shown in Fig. 1. The steps involved in the data anal-
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