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a b s t r a c t

Capillary tube flows have been solved through both numerical and analytical approaches. The former
requires a reasonable understanding of the governing equations of heat and fluid flow, thermodynamic
relations, numerical methods, and computer programming, and therefore are not the suitable approach
for most refrigeration and air-conditioning practitioners. Some simpler procedures based on different
strategies for analytically solving the capillary tube flow have been proposed in the literature, although
iterative loops for calculating the mass flow rate are still required. The aim of this work is to advance a
semi-empirical algebraic model to solve adiabatic capillary tube flows using a relatively simple set of
thermodynamic relations and being explicit for the mass flow rate calculation. Comparisons with a com-
prehensive experimental data set, taken with the refrigerants HFC-134a and HC-600a, has shown that the
model predicts more than 90% and nearly 100% of all data within ±10% and ±15% error bands,
respectively.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A capillary tube is a small bore pipeline connecting the con-
denser to the evaporator in small-scale refrigeration systems (i.e.,
cooling capacities below 5 kW). Liquid refrigerant flows into one
end, and expands down to the evaporator pressure. In doing so it
meters refrigerant at the desired mass flow rate. A capillary tube
appears to be quite simple, but the refrigerant flow inside this
component is rather complex. The flow offers several challenges
for a phenomenological description: turbulence, phase-change,
compressibility and non-equilibrium effects all occur in capillary
tube flows. Due to the importance of capillary tubes to the refrig-
eration industry, models for sizing these components have been
extensively proposed in the literature, spanning from empirical
correlations [1–6] to first-principles simulation codes [7–12].

In general, the refrigerant flows in adiabatic capillary tubes have
been modeled based on the following key assumptions: (i) the cap-
illary is a straight, horizontal and constant cross-sectional area
tube; (ii) the viscous compressible flow is one-dimensional in the
axial direction; (iii) the pressure drop at the capillary tube entrance
and exit sections is disregarded; (iv) the two-phase flow is homo-
geneous, and (v) the metastable flow is neglected. Hence, the gov-
erning equations, derived from the mass, momentum and energy

conservation principles, can be expressed by the following set of
ordinary differential equations [13]:

G2dv þ dpþ fG2vdz=2D ¼ 0 ð1Þ

dhþ G2vdv ¼ 0 ð2Þ

where the specific volume derivative, dv, is obtained from

dv ¼ ð@v=@hÞpdhþ ð@v=@pÞhdp ð3Þ

For a given mass flux G, there are three equations and four un-
knowns (p, h, v, z) and, therefore, one unknown must be chosen as
the integration domain. Taking pressure as the integration domain,
Eqs. (1)–(3) may be re-arranged as follows [13]:

dz
dp
¼ � 2D

fG2v
1þ G2½vð@v=@hÞp þ ð@v=@pÞh�

1þ G2vð@v=@hÞp
ð4Þ

dh
dp
¼ � G2vð@v=@pÞh

1þ G2vð@v=@hÞp
ð5Þ

Eqs. (4) and (5) express the tube length and enthalpy variation
with respect to the refrigerant pressure for any flow regime,
respectively. The boundary conditions are the thermodynamic
states at the entrance of the capillary tube (condensing pressure
and subcooling) and the pressure at the capillary tube exit (evapo-
rating or sonic pressure). It should be noted that there are three
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boundary conditions and only two equations, but one boundary
condition (i.e., the exit pressure) has to be used for the mass flow
rate calculation.

The solution algorithm requires the numerical integration of
Eqs. (4) and (5) using a guessed mass flux, G, which is iteratively
corrected since the flow might be choked at the capillary tube exit
[13]. In addition, the thermodynamic properties, particularly the
specific volume and its derivatives (@v/@p)h and (ov/oh)p, and the
friction factor ought to be calculated at every point of the solution
domain. Because of these, the numerical approach is time consum-
ing and requires some programming abilities. As an alternative,
algebraic analytical solutions for capillary tube flows have been
proposed in the literature, although most of them relied on itera-
tive loops for calculating the refrigerant mass flow rate.

2. Existing algebraic solutions

Yilmaz and Unal [14] proposed an algebraic model for predict-
ing the mass flow rate of pure refrigerant flows through adiabatic
capillary tubes. The flow was regarded as isenthalpic, thus allowing
Eqs. (1)–(3) to be re-written as

dz
dp
¼ � 2D

fG2v
½1þ G2ð@v=@pÞh� ð6Þ

Assuming the liquid specific volume as constant and integrating
Eq. (6) from the capillary tube entrance until the flash point
(Fig. 1a), the liquid region length is then calculated from

Lsp ¼ �
Z f

i

2D

fG2v
dp ¼ 2D

fspG2

pi � pf

v f
ð7Þ

In addition, Yilmaz and Unal [14] demonstrated that the two-
phase specific volume along an isenthalpic line can be calculated
by v = a + b/p, where a = vf(1 � k), b = vfpfk, k = 2.62 � 105pf

�0.75,
pf = pvap(hliq = hi), vf = vliq(pf), and thus (@v/@p)h = �b/p2. Therefore,
the two-phase length was calculated integrating Eq. (6) from the
flash point to the capillary tube exit,

Ltp ¼ �
Z e

f

2D

fG2

1� G2b=p2

aþ b=p

 !
dp

¼ 2D

ftpG2

pf � pe

a
þ b

a2 ln
ape þ b
apf þ b

 !
� G2ln

ve

v f

� �" #
ð8Þ

Noting that the total tube length is given by L = Lsp + Ltp, Eqs. (7)
and (8) can be re-written for the mass flow rate, w,

w ¼ pD2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ftp

fsp

pi�pf

v f
þ pf�pe

a þ b
a2 ln apeþb

apfþb

� �
ftpL
2D þ lnðve

v f
Þ

vuuut ð9Þ

where w is given in (kg/s). In the work of Yilmaz and Unal [14], both
single and two-phase friction factors were calculated using the cor-
relation proposed by Churchill [15], considering the following aver-
age viscosity for the two-phase region,

gtp ¼
8
7
gf

1� ðpe=pf Þ
7=8

1� pe=pf

" #
ð10Þ

where index f refers to the flash-point properties. Such a position is
determined either as shown in Fig. 1a, for subcooled, or Fig. 1b for
two-phase flow inlet conditions.

The predictions of the formulation introduced by Yilmaz and
Unal [14] have been compared with hundreds of in-house experi-
mental data points taken with adiabatic capillary tubes and with
the refrigerants HFC-134a and HC-600a. Table 1 summarized the
operational and geometric conditions used during the experi-
ments. As shown in Fig. 2, the Yilmaz–Unal model predicts 86.5%
of all data within ±10% error bands.

In their work, Yilmaz and Unal [14] assumed the exit pressure
as equal to the evaporating pressure, thus neglecting the occur-
rence of choked flow at the capillary outlet. Zhang and Ding [16]
improved the Yilmaz and Unal’s [14] model by considering the exit
pressure to be pe = max(pevap, psonic), where the sonic pressure at
the capillary exit was obtained setting dz/dp ? 0 in Eq. (6),

psonic ¼ G
ffiffiffiffiffiffiffiffiffiffiffiffi
v f pf k

q
ð11Þ

Zhang and Ding [16] added several other contributions to Yil-
maz and Unal’s [14] formulation. Firstly, they refitted the correla-
tion for k(pf), proposing k = 1.63 � 105pf

�0.72. Also noting that
Yilmaz and Unal’s [14] formulation was implicit due to the friction
factor dependence on the mass flow rate, they proposed a two-step
predictor–corrector solution for Eq. (9) based on an approximated
mass flow rate to calculate the friction factor.

Fig. 3 compares the predictions of the formulation introduced
by Zhang and Ding [16] with the entire database, showing that
the model predicts 82.9% of all data within ±10% error bands.

Later, Yang and Wang [17] derived an empirical p-type dimen-
sionless correlation based on the formulation of Zhang and Ding
[16], as follows,

Nomenclature

D capillary tube inner diameter (m)
f friction factor (dimensionless)
G mass flux (kg/s m2)
h enthalpy (J/kg)
L capillary tube length (m)
p pressure (Pa)
Re Reynolds number (=4w/pDgf) (dimensionless)
RMS root mean square error
T temperature (K)
v specific volume (m3/kg)
w mass flow rate (kg/s)
z axial coordinate (m)

Greek symbols
g viscosity (Pa s)
DTsub subcooling degree at capillary inlet (K)

U capillary tube constant (�6.0)

Subscripts
c capillary tube, condensing
e evaporating
f flash point
h isenthalpic process
i inlet
l saturated liquid
o outlet
p isobaric process
sat saturation
sonic choked flow
v saturated vapor
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