Accepted Manuscript

Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G

Yi Li, Lye Lin Lock, Yuzhu Wang, Shih-Hao Ou, David Stern, Arne Schön, Ernesto Freire, Xuankuo Xu, Sanchayita Ghose, Zheng Jian Li, Honggang Cui

Bio materials

PII: S0142-9612(18)30287-4

DOI: 10.1016/j.biomaterials.2018.04.032

Reference: JBMT 18618

To appear in: Biomaterials

Received Date: 31 January 2018

Revised Date: 11 April 2018
Accepted Date: 14 April 2018

Please cite this article as: Li Y, Lock LL, Wang Y, Ou S-H, Stern D, Schön A, Freire E, Xu X, Ghose S, Li ZJ, Cui H, Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G, *Biomaterials* (2018), doi: 10.1016/j.biomaterials.2018.04.032.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Bioinspired Supramolecular Engineering of Self-Assembling

Immunofibers for High Affinity Binding of Immunoglobulin G

Yi Li,^a Lye Lin Lock,^b Yuzhu Wang,^a Shih-Hao Ou,^a David Stern,^a Arne Schön,^c Ernesto Freire,^c

Xuankuo Xu, b,* Sanchayita Ghose, b Zheng Jian Li, b and Honggang Cui^{a,d,*}

^aDepartment of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The

Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States

^bBiologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb,

Devens, MA 01434, United States

^cDepartment of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, MD 21218, United

States

^dDepartment of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins

University School of Medicine, Baltimore, MD 21205, United States

ABSTRACT: Many one-dimensional (1D) nanostructures are constructed by self-assembly of peptides

or peptide conjugates containing a short β -sheet sequence as the core building motif essential for the

intermolecular hydrogen bonding that promotes directional, anisotropic growth of the resultant

assemblies. While this molecular engineering strategy has led to the successful production of a plethora

of bioactive filamentous β -sheet assemblies for interfacing with biomolecules and cells, concerns

associated with effective presentation of α -helical epitopes and their function preservation have yet to be

resolved. In this context, we report on the direct conjugation of the protein A mimicking peptide Z33, a

*Corresponding author.

Email addresses: xuankuo.xu@bms.com (X. Xu), hcui6@jhu.edu (H. Cui).

Download English Version:

https://daneshyari.com/en/article/6484393

Download Persian Version:

https://daneshyari.com/article/6484393

<u>Daneshyari.com</u>