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a b s t r a c t

Cell morphology has been identified as a potential indicator of stem cell response to biomaterials.
However, determination of cell shape phenotype in biomaterials is complicated by heterogeneous cell
populations, microenvironment heterogeneity, and multi-parametric definitions of cell morphology. To
associate cell morphology with cell-material interactions, we developed a shape phenotyping framework
based on support vector machines. A feature selection procedure was implemented to select the most
significant combination of cell shape metrics to build classifiers with both accuracy and stability to
identify and predict microenvironment-driven morphological differences in heterogeneous cell pop-
ulations. The analysis was conducted at a multi-cell level, where a “supercell” method used average
shape measurements of small groups of single cells to account for heterogeneous populations and
microenvironment. A subsampling validation algorithm revealed the range of supercell sizes and sample
sizes needed for classifier stability and generalization capability. As an example, the responses of human
bone marrow stromal cells (hBMSCs) to fibrous vs flat microenvironments were compared on day 1. Our
analysis showed that 57 cells (grouped into supercells of size 4) are the minimum needed for pheno-
typing. The analysis identified that a combination of minor axis length, solidity, and mean negative
curvature were the strongest early shape-based indicator of hBMSCs response to fibrous
microenvironment.

© 2016 Published by Elsevier Ltd.

1. Introduction

Themorphology of a cell is influenced by a combination of many
intracellular mechanical processes, interactions with other cells
and the surrounding extracellular matrix [1e7]. Thus, cell
morphology reflects the integrative effect of many distinct pro-
cesses and signaling pathways across different scales [4,5] and may
be a valuable descriptor of cell behaviors in differentiation [8e14],
function or dysfunction [15], migration [16e18] and cancer pro-
gression [19]. For example, a recent study by Marklein et al. [8]
demonstrates over 90% accuracy in the prediction of day 35

mineralization of human bone-marrow derivedmesenchymal stem
cells (hMSCs) cultures of varying donors and passages based on day
3 cell morphology. In another recent study by Unadkat et al. [10],
cell morphology was also investigated as an indicator of cell
genotypic and phenotypic responses. Beyond being a possible in-
dicator, some studies have shown that either affecting cell
morphology with surface topographical cues [20e23] or directly
manipulating cell morphology through geometric constraints of
cell adhesive regions can elicit genotypic or phenotypic alterations
[5e7,24]. Therefore, cell morphology may contribute as a
descriptor, indicator or intermediate factor in characterizing cell-
material interactions. High-throughput single-cell bioimaging has
enabled the quantification of heterogeneous cell population with
many cell shape features that are increasingly difficult to interpret.
In addition, the complex biomaterial microenvironment can also
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contribute to the heterogeneity of cell shape response. Innovative
analytical tools must be developed to identify and combine key cell
shape features correlated with biological outcome while account-
ing for both multi-parametric complexity and biological
heterogeneity.

Multi-parametric single-cell data are widely used in bio-
materials studies with technologies such as bioimaging, single-cell
PCR and flow cytometry. In order to associate multi-parametric
single cell data with cell-material interactions, appropriate
computational and statistical tools are required to quantify the
informative content of data and describe differences between cell
populations. Common statistical methods typically used are Stu-
dent's t-test and ANOVA analyses. These approaches describe dif-
ferences of the multi-parametric data by comparing the values of
each single metric across different cell populations with a statistical
hypothesis test which outputs a p-value [25,26]. This has proven
valuable to determine individual metrics that may be important in
characterizing cell-material interactions. However, if we intend to
describe the cell phenotypes for cell populations with more
comprehensive representations by combining multiple metrics,
these approaches are limited as they omit correlations between
metrics in describing cell population differences.

Representations of multi-parametric data can be obtained by
other statistical methods, such as principal component analysis
(PCA) and singular value decomposition (SVD) [8,27,28]. More
recent methods (for instance, self-organizing maps [29] and
multidimensional scaling [9]) can achieve reduced multidimen-
sional representations of cell morphology. However, these methods
bring other limitations. In particular, they are not designed to
separate different classes optimally and, the achieved dimensional
reduction introduces more abstract descriptions of the system in
terms of linear or non-linear combinations of metrics, bringing
difficulties to determine relevant features in defining the cell
phenotypes. To address these limitations, we have developed an
approach to overcome several of these limitations by generating
multi-dimensional linear classifiers that allow simple interpreta-
tion for classification and phenotyping in reduced metric space.

In this study, we investigated the morphology of human bone
marrow stromal cells (hBMSCs) in fibrous substrates compared to
that of cells on flat films (Fig. 1a) in presence or absence of osteo-
genic differentiation media. Fibrous materials are widely used in
both research and clinical applications of tissue engineering and
regeneration medicine. Previous studies had demonstrated that
hBMSCs cultures on fibrous substrates developed osteogenic dif-
ferentiation after 50 days of culturing without any osteogenic
supplement [21]. Morphological response of hBMSCs in fibrous
substrates is being investigated as a possible mechanism for oste-
ogenic differentiation observed in this microenvironment
[21,30e33]. This hypothesis is supported by several studies
describing mechanistic associations between hMSCs shape and
subsequent differentiation [5e7]. However, only a few individual
cell shape features have been investigated for their associationwith
differentiation, and cell morphologies vary greatly across a fibrous
substrate. To address this limitation, we have developed an analysis
framework for multi-parametric single-cell data based on support
vector machines (SVMs) [34e36] to quantify shape differences of
hBMSCs populations and associate them with different microen-
vironments (Fig. 1b). SVM classifiers are designed to find the
optimal classification boundary that separates data points in the
multidimensional shape metric space. We investigated a wide
range of shape metrics to quantify global and local shape features,
including for example cell size and aspect ratio, cytoskeletal
branching, and local boundary curvature. Moreover, the resulting
SVM classifiers provided a selection of reduced shape metrics to
quantify hBMSCs shape phenotypes in specific microenvironments.

The heterogeneous cell population and the heterogeneous
microenvironment may cause variability in cell morphology, where
difference between shapes of single cells within the same culture
environment are observed. Within the SVM scenario, variability in
cell morphology can lead to highly overlapping cell populations
and, thus poorly performing classifiers on the single-cell level. In
order to address single-cell heterogeneity from different sources, a
method of averaging shapemetrics over a small subset of randomly
selected cells known as “supercell” averaging [36,37] was imple-
mented to improve the training and prediction accuracies of the
SVM classifiers. Instead of solely focusing on phenotypes on single-
cell level, the SVM/supercell paradigm allowed consideration of cell
shape phenotypes associated to small groups of cells, i.e. “super-
cells”. The random sampling used to generate supercells can
introduce uncertainty in the SVM classifier. The tradeoff between
prediction accuracy, supercell averaging and uncertainty in the
classifier were quantitatively determined in this study. Further-
more, by introducing a subsampling validation procedure, we
studied the sample size as another important limiting factor in the
construction of single-cell or supercell phenotypes and its effects
on classifier prediction accuracy. By combining multiple metrics
and learning at small cell group levels, the SVM/supercell paradigm
quantitatively identified changes in population behavior of cell
morphology for four different conditions. Building on this
approach, a systematic analysis of the cell morphological response
to the physical and biochemical properties of their surrounding
microenvironment could be carried out.

2. Materials and methods

Certain commercial equipment, instruments, or materials are
identified in this paper in order to specify the experimental pro-
cedure adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available
for the purpose.

2.1. Preparation of substrates

To fabricate poly(ε-caprolactone) (PCL) fibrous substrates (FS),
PCL solution (0.15 g/mL in 5: 1 vol ratio of chloroform: methanol)
was dispensed by a 3 mL syringe and pump (0.5 mL/h) through a 21
gauge 100 shaft, flat tip, dispensing needle over an array of 0.95 cm2

tissue-culture polystyrene (TCPS) disks arranged on a grounded
aluminum foil over a 6 h period. The distance between the syringe
needle and the target TCPS disk array was 20.4 cm. The needle was
connected to a positive lead of 13.5 kV. To help the adhesion of PCL
fibers over the target TCPS disk array, the disks were sprayed with
70% by mass ethanol solution every 10 min to enhance fiber
deposition to the disks. The diameter of fabricated PCL fibers was
(589 ± 116) nm (n ¼ 151) as determined by scanning electron mi-
croscopy imaging (2.00 kV, 5000�).

PCL spin-coated films (SC) were prepared by spin-coating PCL
solution (0.7 mL, 0.1 g/mL in glacial acetic acid) on tissue-culture
polystyrene dishes at 1100 rpm for 30 s. Films were air dried at
room temperature overnight and heated above 60 �C for 4 to 5
times in order to achieve a reproducible cobblestone pattern in the
films [38]. Films were punched into disks of 0.95 cm2. The surface
roughness of the SC is (92.76 ± 10.69) nm determined by atomic
force microscopy.

FS and SC disks were placed in 48-well tissue-culture poly-
styrene plates. Plates were sterilized by ethylene oxide for 12 h and
then purged under vacuum for 2 days. Before cell seeding, eachwell
was fully wetted with basal cell culture media (a-minimum
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