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a b s t r a c t

Fibronectin (Fn) forms a fibrillar network that controls cell behavior in both physiological and diseased
conditions including cancer. Indeed, breast cancer-associated stromal cells not only increase the quantity
of deposited Fn but also modify its conformation. However, (i) the interplay between mechanical and
conformational properties of early tumor-associated Fn networks and (ii) its effect on tumor vasculari-
zation remain unclear. Here, we first used the Surface Forces Apparatus to reveal that 3T3-L1 pre-
adipocytes exposed to tumor-secreted factors generate a stiffer Fn matrix relative to control cells. We
then show that this early matrix stiffening correlates with increased molecular unfolding in Fn fibers, as
determined by F€orster Resonance Energy Transfer. Finally, we assessed the resulting changes in adhesion
and proangiogenic factor (VEGF) secretion of newly seeded 3T3-L1s, and we examined altered integrin
specificity as a potential mechanism of modified cellematrix interactions through integrin blockers. Our
data indicate that tumor-conditioned Fn decreases adhesion while enhancing VEGF secretion by pre-
adipocytes, and that an integrin switch is responsible for such changes. Collectively, our findings suggest
that simultaneous stiffening and unfolding of initially deposited tumor-conditioned Fn alters both
adhesion and proangiogenic behavior of surrounding stromal cells, likely promoting vascularization and
growth of the breast tumor. This work enhances our knowledge of cell e Fn matrix interactions that may
be exploited for other biomaterials-based applications, including advanced tissue engineering
approaches.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Varied physicochemical properties of the extracellular matrix
(ECM), a dynamic and complex fibrillar network, modulate cellular
behavior. In tumors, the ECM is primarily generated by cancer-
associated cells (e.g. fibroblasts and adipogenic precursors) and
contributes to sustained tumor growth and survival [1e8]. It ex-
hibits numerous altered materials properties relative to normal
ECM including variations in protein composition, structure, and

rigidity. In fact, analysis of tumorous ECMs revealed differences in
collagen I deposition relative to normal ECMs as suggested by
elevated quantities, reorganization, crosslinking, and stiffness of
collagen [4,9e13]. Moreover, fibronectin (Fn) might be responsible
for additional ECM structural alterations, as indicated by the pres-
ence of highly stretched and unfolded Fn fibers in tumor-associated
matrices [14,15]. It is important to recognize that tumor-associated
Fn and collagen alterations are functionally linked since Fn (i) is
essential for the deposition of collagen I in ECMs [4,16e18] and (ii)
is also used as an indicator for increased tumor aggressiveness [19].
Nevertheless, a clear correlation between structural, conforma-
tional, and mechanical properties of the tumorous ECM network
and the role of Fn in this process has not been established. This
correlation has been hindered partly by the intrinsic complex
composition of the ECM, and by the lack of analytical tools that
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permit simultaneous assessment of ECM materials properties from
the matrix/cellular to the molecular scale. Indeed, both collagen
and Fn fibers are present in mature ECM and likely synergize to
modulate the bulk properties of the tumor ECM [17,20]. Addition-
ally, there is a lack of materials science tools to separately assess
morphology and mechanics of native (uncrosslinked) ECM at both
matrix/cellular and molecular scales under physiologically relevant
conditions.

Altered materials properties of the tumor ECM are clinically
relevant as they promote tumor malignancy via direct effects on
tumor cells [8] and indirectly by enhancing the formation of new
blood vessels (angiogenesis) [4,9e13]. In fact, altered ECM can
enhance angiogenesis either by increasing the activity of sur-
rounding endothelial cells [14,15] or by stimulating the secretion of
proangiogenic factors (e.g. vascular endothelial growth factor
[VEGF]) from cancer-associated fibroblasts [4,16e18]. However, the
specific ECM properties and associated mechanisms responsible for
the proangiogenic capability of tumor-associated cells remain
unclear.

Here, we integrated a set of physical sciences tools with cancer
biology to: (i) characterize the mechanics, conformation, and to-
pology of tumor-associated Fn matrices at both the matrix and
molecular scales, and (ii) correlate these materials properties with
adhesion and proangiogenic factor (VEGF) secretion of adipose
stromal cells. Our results revealed that tumor-conditioned Fn
matrices were stiffer and more unfolded than control matrices, and
that these dysregulated matrices contributed to enhanced VEGF
secretion by stromal cells.

2. Materials and methods

2.1. Cell culture

As an in vitro model of cancer-associated stromal cells, we utilized tumor-
associated 3T3-L1 preadipocytes (ATCC, VA). Tumor soluble factors (TSF) from an
aggressive metastatic breast cancer line, MDA-MB231 cells (ATCC, VA), were
collected to mimic paracrine signaling between a tumor and its surrounding
microenvironment. After exposing 3T3-L1s to TSF for 3 days, the preconditioned
cells were detached and cultured on mica substrates for 24 h. Afterwards, culture
systems were decellularized [19,21] and the resulting cell-free matrices were used
for parallel mechanical, topological, and conformational characterization.

2.2. Surface forces apparatus

The Surface Forces Apparatus (SFA) (SurForce LLC, CA) is an interferometry-
based technique that uses fringes of equal chromatic order (FECO) to quantify the
absolute surface separation between two reflecting surfaces, with nm resolution,
while both normal (adhesion) and lateral (friction) forces can be measured. This
technique is extensively described in Refs. [17,20,22,23]. Briefly, in our study, the
lower surface was mounted on a double cantilever spring of known elastic constant
while the upper surface was connected to a step motor to apply normal load on the
lower surface. A white light source was directed through two SFA surfaces (silica
discs) previously glued with semi-reflective silvered mica, building an optical
interferometer. The resulting interference FECO were directed towards the entrance
slit of a photo-spectrometer (Princeton Instruments, NJ) and recorded with a CCD
camera (Princeton Instruments, NJ) for further FECO analysis. The acquisition soft-
ware used was LightField v4.0 (Princeton Instruments, NJ).

2.3. Substrate preparation for SFA characterization

Muscovite mica (S&J Trading, Australia) is a negatively charged, hydrophilic
aluminosilicate that is used as preliminary substrate in all SFA experiments. To
obtain transparent, uniform, and atomically smooth mica surfaces, we cleaved mica
into 1 cm2 sections of 2e5 mm in thickness and metallized themwith 55 nm of silver
to make them semi-reflective. The mica sections (silver side facing down) were then
glued with UV curing glue (E ¼ 1.034 GPa, product 61) (Norland, NJ) onto semi-
cylindrical silica discs of 10 mm in diameter and 20 mm of curvature radius (ESCO
Products, NJ). All preparation steps were performed in a laminar flow cabinet to
minimize particulate contamination. Each SFA experiment requires a pair of discs
glued with mica sections cut from the same sheet to ensure equal mica thicknesses
on both upper and lower discs. Customized PDMS chambers containing cell culture
media were used to house the lower discs during the 24 h matrix deposition process
while the upper discs (bare mica), used as indenters during force measurements,
were kept clean and stored in a desiccator until needed.

2.4. Force curve acquisition and elastic measurements via SFA

Upper and lower SFA cylindrical discs were mounted in a crossed axis config-
uration to ensure awell-defined circular contact junction. The lower disc holding the
ECM was mounted on a 980 N/m spring and the upper disc (bare mica) was used to
indent ECM, as depicted in Fig. 1A. The SFA stainless steel chamber was filled with
75 mL of warm (37 �C) PBS to keep the ECM in physiological conditions during
mechanical characterization, and the entire system was allowed to equilibrate at
37 �C for 1 h. Each ECM was then probed at 4 different locations (approximately
500 mm apart) and each location was indented 3 consecutive times. The systemwas
allowed to equilibrate for 30 min between each indentation and 15 min between
locations. Approach (In) and retraction (Out) measurements (force runs) were per-
formed in quasi-static conditions (at a constant speed of 0.5 mm/min) to minimize
viscous effects. During force runs, FECO were acquired at a rate of 3 frames per
second and post-processed with Matlab R2012b (MathWorks, MA) to yield
forceedistance profiles. These profiles were further analyzed to extract the
compressive elastic moduli using Hertzian contact mechanics between a sphere and
an elastic half-space proposed by Johnson [8,24], equation (1) (see Results).

2.5. Creep testing via SFA

Samples were prepared and mounted in the SFA as described in the previous
section. However, the lower surface was mounted onto a more compliant spring
(k ¼ 676 N/m) and the ECM samples were indented instantaneously (rather than
quasi-statically) by applying increasing step-loads of approximately 3.7 mN
(indentation approximately 5 mm) using the SFA fine micrometer, resulting in forces
that correspond to F1 ¼ F01 ¼ 3.7 mN, F2 ¼ F02 ¼ 7.4 mN, and F03 ¼ 11.1 mN. Changes in
ECM indentation depth (creep) were then monitored over 1800 s by following the
shift of the FECO fringes.

2.6. FRET labeling of fibronectin

Alexa Fluor 488 succinimydyl ester (donor fluorophores) and Alexa Fluor 546
maleimide (acceptor fluorophores) (Invitrogen, CA) were used to label Fn for
intramolecular F€orster Resonance Energy Transfer (FRET) as previously described by
Baneyx et al. [25] and Smith et al. [26]. Fn concentrations and labeling ratios be-
tween donors and acceptors were determined using a DU®730 UVeVis spectro-
photometer (Beckman, IN) at 280 nm, 495 nm, and 556 nm. FRET calibration of
labeled Fn was first carried out in denaturant solution by varying guanidine hy-
drochloride concentrations between 0 and 4 M to obtain acceptor/donor intensity
ratios (IA/ID), termed FRET ratios, as a function of protein denaturation. Additional
FRET calibration of Fn embedded in fibers was performed via a custom-made strain
device and used to correlate Fn fiber FRET ratios with fiber uniaxial strain, as
described in Refs. [27,28].

2.7. Cell seeding and sample decellularization

3T3-L1 (ATCC, VA) preadipocytes (passages 4e10) were preconditioned for 3
days in either a-MEM culture medium (Control) or a-MEM medium containing
normalized TSF. After this preconditioning period, cells were trypsinized and used
for parallel SFA and FRET experiments.

Both flat mica sections (culture area: 64e81 mm2/well) and curved mica sur-
faces (mounted on SFA discs, culture area: 80 mm2/disc) in PDMS chambers were
first incubated with human plasma Fn (Life Technologies, NY) at a concentration of
30 mg/mL in phosphate buffered saline (PBS) for 60 min at room temperature to
facilitate cell adhesion. After rinsing 3 times with PBS, a concentrated cell solution
comprised 2 � 104 preconditioned 3T3-L1s (Control or Tumor) was seeded on the
mica substrates. After 20 min of cell adhesion, 400 mL of exogenous Fn (50 mg/mL)
low serum (1% fetal bovine serum (FBS)) was added. For FRET experiments, the
exogenous Fn consisted of 90% unlabeled Fn (unFN) and 10% FRET-labeled Fn to
prevent intermolecular FRET. For SFA experiments, only unFN was used.

After culturing at 37 �C and 5% CO2 for 24 h, cultures were decellularized via a
modified Cukierman protocol [21] that included deoxycholic acid incubation and
extra wash steps, and left unfixed in PBS. Further samples were fixed for 1 h at 4 �C,
and washed three times with PBS for immunostaining and morphology studies.

2.8. FRET data acquisition

Samples were imaged with a Zeiss 710 confocal microscope (Zeiss, Munich,
Germany) using the C-apochromat water-immersion 40�/1.2 objective, a pinhole of
2 AU, a 488 nm laser set at 10% power, and a pixel dwell time of 6.3 ms to acquire 16-
bit z-stack images spaced 2 mm apart. FRET-Fn fluorescence was simultaneously
collected for the donor fluorophores in the PMT1 channel (514e526 nm) and for the
acceptor fluorophores in the PMT2 channel (566e578 nm), in addition of brightfield
imaging. Donor and acceptor z-stack images were analyzed pixel by pixel with a
customized Matlab code to generate false color FRET ratio (IA/ID) images and FRET
histograms for each image. Individual FRET z-stack images were stacked in ImageJ
(NIH) and reconstructed in Volocity (PerkinElmer, Inc., MA) [26,29,30].
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