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A B S T R A C T

Identification of intron boundaries, called splice junctions, is an important part of delineating gene
structure and functions. This also provides valuable insights into the role of alternative splicing in
increasing functional diversity of genes. Identification of splice junctions through RNA-seq is by mapping
short reads to the reference genome which is prone to errors due to random sequence matches. This
encourages identification of splicing junctions through computational methods based on machine
learning. Existing models are dependent on feature extraction and selection for capturing splicing signals
lying in the vicinity of splice junctions. But such manually extracted features are not exhaustive. We
introduce distributed feature representation, SpliceVec, to avoid explicit and biased feature extraction
generally adopted for such tasks. SpliceVec is based on two widely used distributed representation
models in natural language processing. Learned feature representation in form of SpliceVec is fed to
multilayer perceptron for splice junction classification task. An intrinsic evaluation of SpliceVec indicates
that it is able to group true and false sites distinctly. Our study on optimal context to be considered for
feature extraction indicates inclusion of entire intronic sequence to be better than flanking upstream and
downstream region around splice junctions. Further, SpliceVec is invariant to canonical and non-
canonical splice junction detection. The proposed model is consistent in its performance even with
reduced dataset and class-imbalanced dataset. SpliceVec is computationally efficient and can be trained
with user-defined data as well.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In most of the eukaryotes, a protein coding gene is interrupted
by intervening sequences called introns. These introns are
removed from the exonic sequences via splicing process, which
occurs cotranscriptionally (Shomron and Levy, 2009). The process
generates mature substrates to be translated into proteins. Splicing
involves snipping of introns at exon-intron and intron-exon
junctions, called splice sites or splice junctions, and ligation of
exons. Identification of splice junctions is therefore an important

part of delineating gene structure and functions. Gene identifica-
tion as well as its structural annotation has become an important
problem in bioinformatics due to the abundance of sequenced
genomes made available by advanced sequencing technologies like
RNA-seq. RNA-seq, in recent times, has also provided meaningful
insights into the role of alternative splicing (AS) in increasing
functional diversity of genes. AS is a regulated process which
alternatively skips or joins exons, or parts of exons or introns to
form variety of proteins during translation. Recent estimates by
RNA-seq suggest that more than 90% of multi-exon genes in human
body undergo alternative splicing (Lu et al., 2012), thus making the
identification of splice junctions all the more crucial. Identification
of splice junctions from RNA-seq involves mapping of millions of
short reads to the reference genome. However, multiple potential
match of the short read on the reference genome makes sequence
mapping less reliable (Li and Dewey, 2011). Also, the existing
alignment based methods (Trapnell et al., 2009; Au et al., 2010)
consider detection of splice sites based on only canonical splicing
patterns (GT at donor site and AG at acceptor site) thereby missing
important non-canonical splicing patterns (Lee and Yoon, 2015).

Abbreviations: AS, alternative splicing; CNN, convolutional neural network; t-
SNE, stochastic neighbor embedding; MLP, multilayer perceptron; nt, nucleotides;
bp, base pairs; NLP, natural language processing; CBOW, continuous bag of words;
DBOW, distributed bag of words; DM, distributed memory; ReLU, rectified linear
units; LSVM, linear support vector machines.
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The vast availability of annotated sequences makes it possible
to create large enough training datasets for supervised learning
algorithms to predict splice sites. The correct prediction of splice
sites is facilitated by the identification of relationships and
dependencies among the nucleotides around the splice sites. This
is motivated by the observation that the splicing signals are most
likely to reside in the vicinity of splice sites (Akerman and Mandel-
Gutfreund, 2007). The learning algorithms need a set of features for
training the model. Creating an optimized set of features that best
represent the dataset has always remained a challenge for splice
site prediction. The presence or absence of certain nucleotide
sequences close to the splice sites were considered as features for
splice site prediction for a long time (Brunak et al., 1991; Reese
et al., 1997; Pertea et al., 2001; Degroeve et al., 2004; Huang et al.,
2006; Baten et al., 2006; Sonnenburg et al., 2007). Since all such
features were not known, there have been constant efforts to
improve or refine features as well as include more relevant features
by taking into account recent experimental observations. The large
number of features may not only contain many irrelevant features
but may also adversely affect classifier performance due to its high
dimension. This led to many efforts for obtaining the optimum
feature set through feature selection (Degroeve et al., 2002; Islamaj
et al., 2006; Saeys et al., 2004, 2002). But the set of features
obtained were not exhaustive.

This scenario motivated the adoption of an approach that can
represent features specific to splice junctions based on the splicing
signals without any manual extraction and selection of features.
Rather, the model itself will capture motifs from the biological
sequences that act as splicing signals for splice site selection. Lee
et al. proposed a deep Boltzmann machine based methodology for
splice junction prediction (Lee and Yoon, 2015). Recently, Zhang
et al. have employed a deep convolutional neural network (CNN),
named DeepSplice (Zhang et al., 2016), that learns features that
characterize the true and decoy splice junctions. They have
predicted novel splice junctions based on these features and
obtained state-of-the-art performance of 96% accuracy. A distrib-
uted representation of biological sequences was proposed by
Asgari and Mofrad (2015) and Kimothi et al. (2016) for protein
family classification task where a prediction accuracy of more than
99% was achieved.

This paper introduces a novel approach for distributed feature
representation of splice junctions by embedding it in an n-
dimensional feature space. Each dimension in the feature space
represents one feature of the corresponding splice junction. This
embedding, named SpliceVec, is in the form of n-dimensional
continuous distributed vector representation. The embeddings are
learned by a shallow neural network using unsupervised data. We
explored two variants of SpliceVec, namely genome based SpliceVec
(SpliceVec-g) and splicing-context based SpliceVec (SpliceVec-sp) for
feature representation of splice junctions. We evaluate the quality
of SpliceVec in both intrinsic and extrinsic tasks. For the intrinsic
evaluation, we visually inspect two dimensional representation of
true and false splice sites using Stochastic Neighbor Embedding (t-
SNE) (Maaten and Hinton, 2008). We evaluate SpliceVec on splice
junction classification task for the extrinsic evaluation. In contrast
to the recent deep learning methods, we use simple multilayer
perceptron (MLP) as a classifier. We name this model as SpliceVec-
MLP.

Our results and contributions can be summarized as follows:

� We propose two variations (SpliceVec-g and SpliceVec-sp) for
feature representation of splice sites. SpliceVec outperforms
state-of-the-art methods by 2.42–18.86% in terms of accuracy for
splice site prediction.

� We explored the optimal sequence length that best captures the
splicing signals for improving the prediction results. We find that

inclusion of entire intronic sequence significantly boosts the
predictive power of the classifier.

� The proposed feature representations are more robust in handling
reduced training samples. SpliceVec maintains an accuracy above
99% even with a 60% reduction of training samples whereas the
accuracy of its counterpart drops by about 6%.

� SpliceVec is more consistent in its performance with class-
imbalanced data making it more suitable for the real time
scenario where number of pseudo sites are several times more
than that of true splice sites.

� SpliceVec-MLP identified non-canonical splice junctions (junc-
tions not comprising of the consensus dimer GT or AG at donor or
acceptor site respectively) with 100% accuracy indicating that
our feature representations are invariant to both canonical and
non-canonical splice junctions.

� SpliceVec-MLP can be deployed in both CPU and GPU environ-
ment. SpliceVec-MLP, being 12.94 times computationally faster
than the state-of-the-art model, contributes as a suitable option
for classification of the abundant annotated sequences available
these days by high-throughput sequencing technologies.

2. Methods

The proposed approach can be divided into two stages: the
feature representation stage that generates a distributed repre-
sentation for each splice junction based on either of the two
frameworks, namely word2vec and doc2vec, and classification of
splice junctions using MLP. We shall discuss all these in the
following subsections. An overview of the proposed approach is
shown in Fig. 1.

2.1. Data

We have used the latest release of GENCODE annotation
(Harrow et al., 2012) (version 26), based on human genome
assembly version GRCh38, for extracting true and false splice
junctions. This version was released in March 2017. We extracted
294,576 splice junctions from the protein coding genes. Based on
these splice junctions, we observed that an intron length varies
from 1 to as much as 1,240,200 nucleotides (nt). A recent study
suggests that the shortest known eukaryotic intron length is 30
base pairs (bp) belonging to the human MST1L gene (Piovesan et al.,
2015). Introns shorter than 30 bp are usually accounted to
sequencing errors in genomes. Based on this study, we considered
only those introns whose length were greater than 30 bp. This
reduced the number of splice junctions to 293,889. We selected
293,889 false splice junctions by randomly searching for splice site
consensus sequences GT and AG which were not annotated as
splice junctions. This was considered as a necessary condition for
selection of false splice junctions because more than 98% of splice
junctions are canonical, that is, they contain the consensus
dinucleotide GT at the donor site and AG at the acceptor site
(Burset et al., 2000). In DeepSplice, the length of false splice
junctions was considered to be lying between 10 and 300,000 nt,
the reason of which was not clear. So, instead, we considered only
those false splice junctions whose length was not less than 30 nt
and not more than 1,240,200 nt with both donor and acceptor
splice sites lying in the same chromosome. We considered this
range to mimic the scenario of true introns.

2.2. Distributed representation

Vector representation of a word or a sentence is an integral part
of many natural language processing (NLP) tasks. Although local
representations, like N-grams and bag-of-words, have been
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