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A B S T R A C T

Identifying patterns of association or dependency among high-dimensional biological datasets with
sparse precision matrices remains a challenge. In this paper, we introduce a weighted sparse Gaussian
graphical model that can incorporate prior knowledge to infer the structure of the network of trace
element concentrations, including essential elements as well as toxic metals and metaloids measured in
the human placentas. We present the weighted L1 penalized regularization procedure for estimating the
sparse precision matrix in the setting of Gaussian graphical models. First, we use simulation models to
demonstrate that the proposed method yields a better estimate of the precision matrix than the
procedures that fail to account for the prior knowledge of the network structure. Then, we apply this
method to estimate sparse element concentration matrices of placental biopsies from the New
Hampshire Birth Cohort Study. The chemical architecture for elements is complex; thus, the method
proposed herein was applied to infer the dependency structures of the elements using prior knowledge of
their biological roles.

© 2017 Elsevier Ltd. All rights reserved.

1. Background

The advancement of large-scale genomics, epigenomics, gene
expression, and other biochemical assays has propelled the
application of graphical models for analysing high-dimensional
biological datasets (Damaraju et al., 2014; Pierson et al., 2015;
Vinciotti et al., 2016). Graphical models visually represent
dependencies, or relationships, among stochastic variables (i.e.,
genes, proteins, or chemical elements). The Gaussian graphical
model assumes that the set of variables follows a multivariate
normal distribution, and a precision matrix is used to represent the
inverse of the covariance matrix. Gaussian graphical models often
assume a sparse precision matrix, characterized by many zeros,
which occur when the variation for a given variable is predicted by
a small subset of other variables in the matrix (Dempster, 1972).
There have been several efforts to address the computational
challenges encountered when using graphical models to infer

complex relationships in biological datasets (Meinshausen and
Buhlmann, 2004; Schafer and Strimmer, 2004; Dobra et al., 2004).
For example, the precision matrix from a large-scale gene
association network was estimated using a novel shrinkage
covariance estimator, but this method failed to account for the
sparsity of the precision matrix (Schafer and Strimmer, 2004).
Penalized approaches (Li and Gui, 2006; Friedman et al., 2008;
Hsieh et al., 2011) addressed the sparse structure of high-
dimensional gene expression datasets by using threshold gradient
descent and lasso (least absolute shrinkage and selection operator)
penalty. Powered by coordinate decent procedure, penalized
approaches are remarkably computationally efficient and facilitate
the application to large data sets with thousands of parameters.

Some of the challenges to identifying patterns of association
between biological entities via modelling sparse precision matri-
ces can in part be alleviated by incorporating prior knowledge in
the Gaussian graphical model estimation. In this paper, we propose
to use prior knowledge of chemical associations to improve the
estimation of their dependency structures in bulk elemental
concentrations measured in placental tissue samples. Essential
elements are homeostatically regulated some more tightly than
others due to their potential for cellular damage. Selective
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transport of essential metal and non-metal elements across
biological membranes uses chemical properties such as ionic
radius and charge to discriminate between elements; a fallible
process which allows entry of potentially toxic elements. These
shared transport routes serve as prior information for associations
between elements in our study. Shared transport routes have
proven robust in other biological systems, for instance, the
transport of cadmium, zinc and manganese by iron transporters
in plants (Korshunova et al., 1999), suppression of iron, manganese
and zinc uptake by cadmium (Eide et al., 1996); co-transport of
calcium and strontium (Twardock, 1963), co-transport of arsenate
and phosphate (Rosen and Liu, 2009), as well as co-transport of
lead and calcium (Simons, 1988). Identification of orthologous
genes between species has been critical to understanding their
function, which are strongly conserved in membrane transport
proteins. In the human placenta, membrane transport is pivotal to
function due to the intense bidirectional traffic of nutrients,
respiratory gases, waste products and hormones between the
maternal and fetal blood supplies. We hypothesize that analysing
elemental associations in the placenta may therefore be particu-
larly informative.

We use the covariance between metal elements across
placental tissues to define the precision matrix. Some metals will
be highly connected in the precision matrix and thus fit the
characterization of a hub. We propose to add weight to the network
hubs, identified using prior biological knowledge, to increase the
accuracy of the estimated graph. We introduce a weighted lasso
regularization procedure for penalized estimation of a sparse
precision matrix in the setting of Gaussian graphical models. Then,
we demonstrate its application to identifying networks based on
metal element concentrations in human placenta biopsy speci-
mens. Such a regularization procedure aims to account for the
sparsity of the precision matrix in the estimation stage while
taking advantage of prior biological knowledge in the weighting
scheme. After obtaining the estimate of the precision matrix, we
applied a bootstrap procedure to identify the edges of the graph.
Through simulations and application to real data sets, we
demonstrate that this procedure is computationally feasible for
both large and small sample cases and provides biologically
meaningful results. Our method would be applicable to any
biological dataset with prior knowledge of variables which are
likely to be hubs in the network.

2. Methods

2.1. Gaussian graphical model

In the following estimations using the Gaussian graphical
model, we assume that the data are randomly sampled observa-
tional or experimental data from a multivariate normal probability
model. Specifically, let X be a random normal p-dimensional vector
and X1, X2, . . . , Xp denote the p elements, where p is the number of
elements. Let V={1, 2, . . . , p} be the set of vertices, or nodes, and
x(k) be the vector of elemental concentration levels for the kth
sample. We assume that X � Np(0, S) and S is a positive definite
covariance matrix. Let V ¼ wij be the precision matrix which is

defined as the inverse of the covariance matrix S. Let E be the set of
edges connecting the set of V vertices, and the Gaussian graphical
model G = (V, E) represents an undirected graph and satisfies the
linear restrictions: eij ¼ 0 ) wij ¼ 0. Here eij is an indicator
variable for the existence of an edge between vertex i and j. The
Gaussian graphical model is also called a covariance selection
model (Dempster, 1972) or a Gaussian concentration graph model.
L1 (Lasso) regularization is well suited to compensate for the
sparse nature of the true network in real data estimated with

sparse Gaussian graphical models. Let S be the empirical
covariance matrix, the penalized log-likelihood function can be
written as:

l ¼ log ðdetðVÞÞ � trðSÞ � l k Vk1 ð1Þ
Here tr denote the trace and kV k 1 is the sum of absolute values of
all elements in V. We applied the R statistical software library
QUIC developed by Hsieh et al. (2011) to coordinate descent
procedure to estimate the penalized coefficients.

2.2. Weighted Gaussian graphical model

We proposed a weighted Gaussian graphical model to account
for the structure of the underlying true network. Using prior
knowledge about the underlying biology, we can assign weights to
likely hub candidates. Assigning a weight to a hub effectively
assigns that weight to all of the hub's adjacent edges. If we assign
weights only to the strongest candidates (i.e., those with evidence
from the literature), we limit our ability to make novel discoveries.
If we assign weights evenly to all nodes, we do not provide
adequate weight to nodes with some support. Consequently, we
aimed to develop functional networks, which integrate publicly
available biological data to provide both the opportunity to make
new discoveries while also allowing us to focus on candidates that
are more promising than randomly selected nodes.

Unlike the weighted False Discovery Rate (Genovese et al.,
2006; Gui et al., 2015), where weights have to satisfy certain
restrictions, we can freely up-weight and down-weight nodes. We
propose the weighted procedure as follows:

We assume that W ¼ diagfw1; w2; . . . ; wpg is a p-by-p diagonal
matrix and X is an n-by-p data matrix.
1. Identify a subset of nodes (hubs) and the corresponding
weights w1; w2; . . . ; wp. Here wi ¼ 1, when i =2 hub set, and
wi > 1, when i 2 hub set.
2. Transform data X to Xw ¼ XW.
3. Apply QUIC to Xw to estimate the network.

The QUIC is a forward selection procedure which will include
the edges with larger corresponding covariance first. Therefore,
adding a weight to each hub will increase its connectivity in the
estimated network. This approach is equivalent to apply Lasso to a
set of weighted variables in linear regression setting. The weighted
variables will be less penalized than the rest and therefore have a
better chance to get non-zero coefficients after penalization. We
will use simulations to demonstrate this point and determine the
optimal weight.

3. Results and discussion

To demonstrate the strength of the proposed method, we
designed two simulations: Simulation I focused on comparing the
tuning parameter selection methods. Simulation II aimed to
estimate the accuracy of our proposed method under different
settings.

3.1. Simulation of model selection

We simulated input covariance matrices with 40 nodes and 120
samples. Each matrix had 5 hubs with 8 edges on average and 35
non-hub nodes with 1–2 edges on average. First, we assigned
weights to the hubs ranging from 1 (that is, no different from non-
hubs) to 16 (that is, the adjacent edges to each hub have a weight of
16). Then, we applied existing penalized regression methods to the
input covariance matrices in order to produce estimated precision
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