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a  b  s  t  r  a  c  t

In this  manuscript,  we  present  a  computational  model  to  approximate  the solutions  of  a partial  differential
equation  which  describes  the growth  dynamics  of microbial  films.  The  numerical  technique  reported  in
this work  is an  explicit,  nonlinear  finite-difference  methodology  which  is computationally  implemented
using  Newton’s  method.  Our scheme  is compared  numerically  against  an  implicit,  linear  finite-difference
discretization  of  the same  partial  differential  equation,  whose  computer  coding  requires  an  implemen-
tation  of the stabilized  bi-conjugate  gradient  method.  Our  numerical  results  evince  that  the  nonlinear
approach  results  in  a  more  efficient  approximation  to the  solutions  of  the  biofilm  model  considered,  and
demands less  computer  memory.  Moreover,  the  positivity  of  initial  profiles  is  preserved  in the  practice
by the  nonlinear  scheme  proposed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, there has been an increasing interest on the
investigation of the growth dynamics of microbial biofilms, both
to understand comprehensively the physical and the mathematical
principles that govern biofilm growth, and to elucidate possible, rel-
evant biomedical and biotechnological applications. Undoubtedly,
biological films entail both an economic and a biological impor-
tance. Indeed, nowadays biofilms are considered a common cause
of persistent infections; for instance, the Chinese National Institute
of Health has estimated that at least 65% of all bacterial infections
in humans are related to certain types of biological colonies (Chen
et al., 2012). In addition, several nosocomial infections are pre-
sumed to be the result of the presence of pathogenic films in a
wide range of medical devices, like catheters and probes used in
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different hospital services. It is worthwhile to recall that micro-
bial colonies in general are highly organized structures integrated
by communities which are surrounded by a protective extracel-
lular matrix. This important feature makes them resistant to both
antibiotic treatment and host defense systems.

On the other hand, microbial films can grow in many differ-
ent natural and no-natural environments, and may  be considered
benign or detrimental depending upon its place of growth. Biologi-
cal films may  be conformed by a single or by multiple species with
different metabolic mechanisms which, in many cases, function as
cooperative consortia. Here, it is important to mention that these
cooperative consortia have encountered useful practical applica-
tions in the treatment of polluted water (Cao et al., 2012; Castillo
et al., 2011; Ellwood et al., 2011; Jiao et al., 2011), in the develop-
ment of microbial fuel cells to produce electricity (Jain et al., 2011;
Liu et al., 2008, 2010; Yang et al., 2011), in the design of biosensors
(Checa et al., 2012; Velusamy et al., 2010), among other applica-
tions of practical relevance. However, there are also scenarios in
which the formation of biological films results in the deterioration
of surfaces due to the microbial-influenced corrosion (Upadhyayula
and Gadhamshetty, 2010; Little et al., 2008). Despite the many
efforts to simulate and understand the complex nature of microbial
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aggregates, there still exists the need to explore deeper into the
many variables that accompany this mechanism. For instance, the
influence of self-generated attractants on Escherichia coli clustering
has been studied in Kim et al. (2007). In that report, a discrete model
was used to investigate the role of parameters such as chemotaxis
sensitivity, geometry and initial conditions, in order to describe the
joint dynamics of bacteria and attractants.

From a more mathematical point of view, the models which
describe the growth dynamics of biological film are mainly pro-
vided in the form of systems of partial differential equations with
nonlinear diffusion and reaction terms (Efendiev et al., 2002). Some
of these mathematical models take into account the most important
features of biological films observed in the practice, like

(a) the presence of a sharp front of biomass at the fluid/solid tran-
sition,

(b) the existence of a threshold of biomass density,
(c) the fact that the biomass spreading is significant only when the

biomass is close to the threshold,
(d) the application of reaction kinetics mechanisms in the produc-

tion of biomass,
(e) the compatibility of the biomass spreading mechanism with

hydrodynamics and with nutrient transfer/consumption mod-
els,

among other characteristics observed experimentally. Moreover,
some mathematical background for these systems of equations is
readily available in the literature, in the form of theorems on the
existence and uniqueness of positive and bounded solutions. How-
ever, in view of the enormous mathematical complexity of these
nonlinear partial differential equations, the task of providing ana-
lytical expressions of the solutions to meaningful initial conditions
is practically impossible to accomplish.

In view of such mathematical limitations, several computational
approaches have been taken to simulate the growth dynamics of
microbial colonies. For instance, some related techniques are based
on stochastic computational modeling (McCollum et al., 2006).
For deterministic models, the finite-difference approach has been
proposed in works like Eberl et al. (2001), and some differential-
discrete cellular automata have been employed with success in
the growth of gel beads (Picioreanu et al., 1998, 1999). The finite-
element and the finite-volume methodologies have proved fruitful,
too, like in Duddu et al. (2008), Böl et al. (2008), Smith et al. (2007)
or Gallo and Manzini (2003), Picioreanu et al. (2000), Szego et al.
(1993), respectively.

In the present work, we employ a finite-difference approach
to approximate solutions of a nonlinear partial differential equa-
tion in the investigation of biological films. More concretely, our
investigation is partly motivated by the results presented in Eberl
et al. (2001), which reports on a successful finite-difference dis-
cretization of a nonlinear equation from mathematical ecology,
which is capable of preserving the positivity of the approxima-
tions among other relevant mathematical characteristics of the
solutions. The discretization introduced in that work is an implicit,
linear approach whose implementation is provided in terms of a
sparse matrix with number of rows equal to the discrete grid size.
The preservation of the properties of positivity and boundedness is
achieved using the theory of M-matrices, which are non-singular,
real matrices for which the entries of their inverses are all positive
numbers (Fujimoto and Ranade, 2004). The method works at the
expense of large computational memory and lengthy simulation
times. In the present work, however, we provide an explicit, non-
linear finite-difference technique to approximate the solutions of
the same model investigated in Eberl et al. (2001) but, as the numer-
ical simulations show, our approach is computationally faster and
absorbs less computational resources.

The present manuscript is divided as follows. In Section 2, we
introduce the mathematical model of interest in this work. We
present therein some relevant results on the existence and unique-
ness of positive and bounded solutions of the biofilm equation
under investigation. In Section 3, we introduce the finite-difference
discretization of our model. The method is an explicit, nonlinear
technique whose computational realization requires a convenient
implementation of Newton’s method for solving nonlinear equa-
tions. Section 4 presents some simulations that evince the fact that
the method is capable of preserving the property of positivity in the
practice. Finally, we close this manuscript with some discussions
and some concluding remarks.

2. Mathematical model

2.1. Simplified model

Let  ̋ be a closed and connected subset of R
2 or R

3, and let u :
 ̋ × R

+ → R  be a function. Throughout this work, we  suppose that
˛,  ̌ and � are positive real numbers, such that  ̨ > 1,  ̌ > 1 and � � 1.
In this manuscript, we consider the partial differential equation
with nonlinear diffusion factor

∂u

∂t
(x, t) = ∇ · (D(u(x, t))∇u(x, t)) + G(x, t)u(x, t), (1)

where (x, t) ∈  ̋ × R
+, and ∇ denotes the gradient operator in the

spatial domain. Here, the reaction function G :  ̋ × R
+ → R  is con-

tinuous, and the diffusion factor D : [0,  1) → R  is provided by the
expression

D(u) = ıu˛

(1 − u)ˇ
. (2)

Evidently, the variable x represents spatial position, while t denotes
time.

2.2. General model

Eq. (1) is a simplified version of the growth model investigated in
Eberl et al. (2001). Indeed, let s0 and u0 be real functions defined on
˝, and consider the spatially two- or three-dimensional equation

⎧⎪⎨
⎪⎩

∂s

∂t
(x, t) = d1∇2s(x, t) − K1

s(x, t)u(x, t)
K4 + s(x, t)

,

∂u

∂t
(x, t) = d2∇ · D(u(x, t)∇u(x, t)) − K2u + K3

s(x, t)u(x, t)
K4 + s(x, t)

,

(3)

for every (x, t) ∈  ̋ × R
+. Appropriate initial-boundary conditions

are required, namely,

{
s(x, t) = 1, u(x, t) = 0, ∀x ∈ ∂˝, ∀t ≥ 0,

s(x, 0) = s0(x), u(x, 0) = u0(x), ∀x ∈ ˝.
(4)

In this model, s physically represents the substrate concentration
and u denotes the biomass density. The non-negative constants d1,
d2, K1, K2, K3 and K4 stand for the substrate diffusion coefficient, the
biomass diffusion coefficient, the maximum specific consumption
rate, the biomass decay rate, the maximum specific growth rate,
and the monod half saturation constant.

2.3. Existence and uniqueness

The following theorem guarantees the existence and the
uniqueness of positive and bounded solutions of (3) subject to the
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