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a  b  s  t  r  a  c  t

Gene  regulatory  networks  inference  is currently  a topic  under  heavy  research  in the  systems  biology
field.  In  this paper,  gene  regulatory  networks  are  inferred  via  evolutionary  model  based  on  time-series
microarray  data.  A non-linear  differential  equation  model  is  adopted.  Gene  expression  programming
(GEP)  is applied  to  identify  the  structure  of the  model  and  least  mean  square  (LMS)  is  used to  optimize  the
parameters  in  ordinary  differential  equations  (ODEs).  The  proposed  work  has  been  first  verified  by  syn-
thetic data  with  noise-free  and  noisy  time-series  data,  respectively,  and  then  its effectiveness  is  confirmed
by three  real  time-series  expression  datasets.  Finally,  a gene  regulatory  network  was constructed  with
12  Yeast  genes.  Experimental  results  demonstrate  that  our  model  can  improve  the  prediction  accuracy
of  microarray  time-series  data  effectively.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The increasing availability of high-throughput measurements
of transcripts has presented a golden opportunity to infer gene
regulatory networks. Measuring the levels of gene expression in
different conditions is useful in medical diagnosis, treatment, and
drug design (Huang et al., 2010; Sun and Hurley, 2009). Many gene
expression experiments produce time-series data with only a few
time points owing to the high measurement costs. Accurate predic-
tion of the behavior of gene regulatory networks (GRNs) will also
speed up biotechnological projects; as such predictions are quicker
and cheaper than lab experiments. Therefore, it is highly desired
to infer the model of gene regulatory networks using gene expres-
sion time-series data. How to predict gene regulatory networks has
become an important research area in bioinformatics.

Recently, many dynamic modeling of gene regulatory networks
from time-series data has received more and more research inter-
est (De Jong, 2002; Karlebach and Shamir, 2008), such as Boolean
network (Akutsu et al., 1999; Bornholdt, 2008), dynamic Bayesian
networks (Ghahramani, 1998; Murphy and Mian, 1999; Liu et al.,
2006), neural networks (Lee and Yang, 2008), differential equations
(De Jong, 2002; Chen et al., 1999; De Hoon et al., 2002; D’haeseleer
et al., 1999), state-space model (Wu  et al., 2004), stochastic model
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(Wang et al., 2008, 2010), and so no. A recent review to infer gene
regulatory networks based on data integration in dynamical models
can be seen in reference Hecker et al. (2009). The system of ordi-
nary differential equations (ODEs) is a powerful and flexible model
to describe complex relations, so many methods are proposed to
infer genetic regulatory systems using ODEs. For example, Li et al.
(2011) have proposed a new hybrid algorithm integrating ordinary
differential equation models with local dynamic Bayesian network
to infer gene regulatory network. Vilela et al. (2009) identified
neutral biochemical network models from time-series data, com-
bining Monte Carlo to optimize the parameters. Zhou et al. (2012)
reconstructed GRN from time-series microarray data using step-
wise multiple linear regression. Yang et al. (2012) proposed flexible
neural tree model which is used for gene regulatory network
reconstruction and time-series prediction from gene expression
profiling. Unfortunately, most results reported on ODEs have been
focused on fix structure of equations which describe the gene regu-
latory networks and the only one goal was to optimize parameters
and coefficients. So it is the motivation of this paper to develop a
system biology approach to determine the suitable form of equa-
tions which describe the network and to infer reverse engineer gene
regulatory network from time-series data with higher accuracy and
better scalability.

In our study, we cope with an arbitrary form in the right-hand
side of the ODEs models. In order to identify the models, gene
expression programming (GEP) is utilized to evolve the right-hand
side of the ODEs from the observed time-series gene expression
dataset. GEP is a new evolutionary algorithm which has good
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performance to solve time-series prediction problem (Zuo et al.,
2004). To decrease the complexity of the genetic network inference
problem, the partitioning (Bongard and Lipson, 2007) is used in the
process of identification of structure of system. Each ODE can be
inferred separately and the research space reduces rapidly. In this
paper, two synthetic time-series datasets obtained by E-cell sys-
tem (Tomita et al., 1999) and three other real microarray datasets
from Worm gene expression time-series dataset (Yeung et al.,
2001), Human cell time-series dataset (Whitfield et al., 2002) and
Yeast time-series dataset (Woolf and Wang, 2000; Schneider and
Guarente, 1991) are used to test our method. Finally, a gene reg-
ulatory network was constructed with Yeast time-series dataset.
Experiment results show that our method is capable of improving
the prediction accuracy of microarray time-series data effectively.

2. Methods

2.1. Modeling gene regulation with ordinary differential equation

Ordinary differential equations (ODEs) is one of the most pop-
ular tools to model complex systems, which basic relationships
are known between the system components. In the inverse prob-
lem, we often use ODEs to analysis the model from the observed
time-series data.

To allow the flexibility of the model, we consider the following
general form:

dxi

dt
= fi(x1, x2, . . .,  xn) (i = 1, 2, 3, . . .,  n), (1)

where xi the state is variable and n is the number of the observed
data time points.

In order to identify the system, GEP is used to evolve the ODEs
from the observed time-series data. Although GEP could effectively
find the suitable structures, it is sometimes difficult to optimize
the parameters. So least mean square (LMS) (Ando et al., 2002) is
employed to improve the effect of GEP.

2.2. GEP algorithm

2.2.1. Brief introduction of GEP
The GEP algorithm is described in detail in Ferreira (2001,

2006a). We  give a brief introduction below.
The first step, how to define a problem by GEP, the encoding of

the candidate solution and the definition of the fitness function. It
is a most important and most difficult point in GEP. Each problem
has specific the encoding and the fitness function. Adequate choices
are the key factor for the success of the algorithm.

The next step, utilize the GEP algorithm itself including several
stages. A basic flowchart of the algorithm is shown in Fig. 1.

The process starts with the random creation of an initial popu-
lation of chromosomes. Then each chromosome is translated into
an expression tree and each individual is evaluated by fitness func-
tion. The individuals are selected in the light of fitness function to
reproduce with modification. If the termination criterion is not met,
some of the chromosomes are selected and reproduced, resulting in
offspring. The new chromosomes will replace the old ones produc-
ing a new generation. The process continues until the termination
criterion is met  or a certain number of iterations run.

Since GEP offers great potential to solve complex modeling and
optimization problems, it has been used in many fields such as
data and text mining (Zhou et al., 2003; Karakasis and Stafylopatis,
2006), classification (Duan et al., 2006; Karakasis and Stafylopatis,
2008; Duan et al., 2009), time-series analysis (Zuo et al., 2004),
neural network design (Ferreira, 2006b) and various engineering
application (Si et al., 2011).

Fig. 1. The flowchart of basic GEP algorithm.

GEP and genetic programming (GP) are evolutionary algorithms.
The fundamental difference between them resides in the nature of
the individuals: in GEP the individuals are encoded as linear strings
of fixed length which are afterwards expressed as nonlinear entities
of different sizes and shapes; and in GP the individuals are nonlinear
entities of different sizes and shapes. So that GEP provides new
and efficient ways to program evolutionary computation (Ferreira,
2001).

2.2.2. Chromosome encoding
In GEP, the basic unit of an individual is called gene. The most

distinctive feature of GEP is that each gene has access to a geno-
type and a corresponding phenotype: the genotype is a symbolic
string of some fixed length, and the phenotype is the tree struc-
ture for the expression coded by that symbolic string. The symbolic
string of a gene is composed of a head and a tail, both having fixed
lengths. The head contains both function and term symbols, while
the tail contains only term symbols. The function symbol represents
a mathematical operator, such as addition, subtraction, multiplica-
tion, division, log and sin. The term symbol represents an attribute
value. For each problem, the length of the head (|head|) and the
length of the tail (|tail|) satisfy |tail| = |head| × (n − 1) + 1, where n
is the maximum arity of functions under consideration. The head
length (|head|) is determined by the user as the maximum number
of functions in a gene; the length of a gene (|head| + |tail|) remains
unchanged in the middle of an execution of a given GEP algorithm.
In GEP, an individual problem may  involve one or more genes to
encode a candidate solution. For multiple genes in an individual
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