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a  b  s  t  r  a  c  t

Understanding  of proteins  adaptive  to  hypersaline  environment  and  identifying  them  is  a  challenging
task  and would  help  to design  stable  proteins.  Here,  we  have  systematically  analyzed  the normalized
amino  acid  compositions  of 2121  halophilic  and  2400  non-halophilic  proteins.  The  results  showed  that
halophilic  protein  contained  more  Asp  at the  expense  of  Lys,  Ile,  Cys  and  Met,  fewer  small  and  hydrophobic
residues,  and showed  a  large  excess  of  acidic  over  basic  amino  acids.  Then,  we  introduce  a  support  vector
machine  method  to discriminate  the  halophilic  and  non-halophilic  proteins,  by  using  a  novel Pearson  VII
universal  function  based  kernel.  In  the  three  validation  check  methods,  it achieved  an  overall  accuracy
of 97.7%,  91.7%  and  86.9%  and  outperformed  other  machine  learning  algorithms.  We  also  address  the
influence  of  protein  size  on  prediction  accuracy  and  found  the  worse  performance  for  small  size  proteins
might be  some  significant  residues  (Cys  and  Lys)  were  missing  in the proteins.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Halophilic microorganisms, which can survive in media with
high salt concentrations, have generated many scientific interests.
As proteins (enzymes) from the halophilic microorganisms have
the ability to adapt to the extreme conditions of some industrial
processes, such as high salt concentrations, and wide range of
pH, thus offering important biotechnological potentials (Delgado-
García et al., 2012). Designing proteins with improved halo-stability
has been a main focus of protein engineering because of its theo-
retical and practical significance. So identifying the principles that
rule protein halo-stability is of great interest both in basic research
and industrial applications. To identify the features in proteins of
halophilic organisms, many previous studies have been performed
and revealed many important factors such as amino acid com-
position (Satoshi et al., 2003), dipeptide composition (Ebrahimie
et al., 2011), lower propensities for helix formation (Sandip et al.,
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2008), highly negatively charged surfaces and weak hydrophobic
cores (Kastritis et al., 2007) that contributed to the halo-stability of
proteins.

However, there have been few parallel progresses about
theoretical predictions for halo-stabilization (Ebrahimie et al.,
2011), while many previous methods used sequence or structure-
dependent information to predict protein thermostability. For
example, Mozo-Villarías used a simple electrostatic criterion
named the quasi-electric dipole profile to predict the thermal sta-
bility o proteins (Mozo-Villarías et al., 2003). Huang and Gromiha
presented a weighted decision table method to predict the stabil-
ity changes of 180 mutants obtained from thermal denaturation,
the prediction accuracy was 82.2% for the 10-fold cross-validation
(Huang and Gromiha, 2009). And recently, researchers develop
PROTS, a sequential and spatial fragment based potential, for clas-
sifying thermophilic proteins/mesophilic proteins and stability
changes upon mutations. The approach exhibits good performances
in both classification and regression (Li et al., 2012). Some of
these methods were successfully applied to design of thermo-stable
mutants of several proteins (Dalluge et al., 2007; Bae et al., 2008).
Thus, to design resistant proteins under high-salt concentrations,
effective and robust computational algorithms for designing halo-
stable proteins are in critical demand.

In the last few years, applying support vector machines
(SVMs) for solving biological classification and regression problems
has grown substantially duo to its attractive modeling features,
promising generalization performances and robustness. SVMs are
becoming established as a standard tool in bioinformatics (Ward
et al., 2003; Kandaswamy et al., 2011). One of the main reasons for
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the popularity of SVMs is its ability to model complex non-linear
relationships by selecting a suitable kernel function. Some popu-
lar kernels are the linear kernel, polynomial kernel and radial basis
function (RBF) kernel. The present study was initiated in an attempt
to introduce a new kernel, the so-called “Pearson VII universal func-
tion kernel (PUFK)” (Uestuen et al., 2006), to discriminate halophilic
and non-halophilic proteins based only on protein primary struc-
ture information.

2. Materials and methods

2.1. Datasets construction

To get high-quality and unbiased dataset, the data were
strictly screened according to the following procedures. (1). The
extremely halophilic archaeon Halorhabdus tiamatea (Antunes
et al., 2011) and two non-halophilic archaeon Methanococcus mari-
paludis (Hendrickson et al., 2004) and Cenarchaeum symbiosum
(Hallam et al., 2006) were chosen, the proteomic sequences were
from UniProt. (2). Sequences which have fewer than 100 residues
were removed because they might be partial or just be fragments.
(3). Sequences which contain three or more consecutive uncertain
amino acids (i.e. “XXX,” “XXXX,” and so on) were also removed. (4).
To avoid any homologous bias, a redundancy cutoff was  imposed
by Blastclust to exclude those sequence that have ≥25% sequence
identity to any other in the same subset according to Chou’s work
(Chou and Shen, 2008). Finally, we got 2121 halophilic proteins and
2400 non-halophilic proteins.

2.2. Normalized amino acid composition

In previous studies (Satoshi et al., 2003; Sandip et al., 2008), we
found the average amino acid composition of all sequences was
not considered in comparing the difference of amino acid compo-
sition between halophilic and non-halophilic proteins. In Uniprot
database, average amino acid composition in percent for the com-
plete database is listed. Some amino acids such as Cys and Trp have
a small composition in protein sequences, while some amino acids
such as Leu and Ala have a high composition. So, when analyzing
the influence of amino acid composition, the result would be bet-
ter if considering the average amino acid composition of all related
proteins (Ding et al., 2004).

To achieve the goal, we calculated the normalized amino acid
composition (Nacc) of each halophilic and non-halophilic protein
with Eqs. (1) and (2):

Nacci
H = Compi

H − Compi
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where Nacci
H and Nacci

N are normalized composition of amino acid
i for halophilic and non-halophilic proteins, Compi

H and Compi
N are

the composition of amino acid i for halophilic and non-halophilic
proteins, Compi is the average composition of amino acid i for all
proteins in Uniprot. The differences of the amino acid composition
between halophilic and non-halophilic proteins were calculated
according to Eq. (3).
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The overall amino acids for halophilic and non-halophilic proteins
are 671 230 and 717 749, respectively.

2.3. Pearson VII universal function kernel (PUFK)

The general form of the Pearson VII function for curve fitting
purpose is give by

f (x) = H
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2
]
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where H is the peak height at the center x0 of the peak, and x rep-
resents the independent variable. The parameters � and ω control
the half-width and the tailing factor of the peak. However, a func-
tion belongs to the class of valid kernel functions if and only if
its corresponding kernel matrix is symmetric and positive semi-
definite. To show that the PUFK indeed satisfies these conditions,
Uestuen rewritten Eq. (1) into a function of two vectors (Uestuen
et al., 2006):
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where xi and xj are two vector arguments. The peak off-set term
x0 in Eq. (1) is removed and the peak height H is simply replaced
by 1, this without loss of generality. In this way, the Pearson VII
function kernel will lead to a symmetric matrix with ones on the
diagonal and all other entries ranging between the values 0 and
1 for any arbitrary pair (xi and xj). The PUFK is robust and has an
equal or even stronger mapping power as compared to the standard
kernel functions, which lead to an equal or better generalization
performance of SVMs.

The algorithms implementations were achieved using the Weka
package (Inamdar et al., 2004); all the running parameters of the
classifiers were set as the defaults.

2.4. Validation check methods

The performance and robustness of the model was evaluated by
three different validation check approaches, as shown below.

Firstly, we  have used the datasets of 2121 halophilic proteins
(HPs) and 2400 non-halophilic proteins (NPs) to train the model,
these same proteins have been used to predict whether each
protein is halophilic or non-halophilic. This method is called back-
check prediction (or self-consistency test).

Secondly, we  adopted the jackknife test (leave-one-out), which
is deemed the most rigorous and objective with the least arbitrari-
ness that can always yield a unique result for a given benchmark
dataset as discussed by many investigators (Chou, 2011; Chou and
Shen, 2008; Mohabatkar, 2010; Hayat and Khan, 2011; Jahandideh
et al., 2012; Chou, 2001; Kandaswamy et al., 2010; Chen and Li,
2013; Sahu and Panda, 2010) and a review (Chou and Zhang, 1995).
However, to reduce the computational time, we choose the 10-fold
cross-validation to test the accuracy of our method. It was carried
out by taking the total available set of the training datasets and par-
titioning it into 10 approximately equal-sized sets (212 halophilic
proteins and 240 no-halophilic proteins). The protein sequences in
each partition were randomly selected. Then the jackknife test was
used. Nine partitions were used to train the model and then tested
with the remaining partition. This was repeated 10 times, leaving
in turn a different partition of the data out of the training set and
using it to validate the resulting models.

Finally, to provide a more precise assessment of the reliability
and the generalization capacity of the method, we carried out an
independent test. The testing datasets contained completely new
halophilic and non-halophilic protein. There were 2350 HPs and
1565 NPs, which came from an extreme halophile Salinibacter ruber
DSM 13855 and a non-halophile Pelodictyo luteolum DSM  2379
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