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The emergence of inexpensive, base-perfect genome editing is

revolutionising biology. Modern industrial biotechnology

exploits the advances in genome editing in combination with

automation, analytics and data integration to build high-

throughput automated strain engineering pipelines also known

as biofoundries. Biofoundries replace the slow and inconsistent

artisanal processes used to build microbial cell factories with

an automated design–build–test cycle, considerably reducing

the time needed to deliver commercially viable strains. Testing

and hence learning remains relatively shallow, but recent

advances in analytical chemistry promise to increase the depth

of characterization possible. Analytics combined with models

of cellular physiology in automated systems biology pipelines

should enable deeper learning and hence a steeper pitch of the

learning cycle. This review explores the progress, advances

and remaining bottlenecks of analytical tools for high

throughput strain engineering.
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Introduction
The past decade has seen several metabolic engineering

projects progress to commercial bioprocesses for the

sustainable, green production of chemicals [1,2]. In par-

allel, the process of engineering microbial cell factories

has transformed from artisanal to industrial, with the

establishment of biofundries employing the design–

build–test cycle (Figure 1). Powered by inexpensive, base

perfect genome editing technology and automation [3],

the field is rapidly moving towards standardisation, big

data and robust operation.

Biofoundries transform the speed and cost of industrial

strain design [2,4�]. Until recently, it took at least 5 years,

100 person years and US$50 million to develop a com-

mercial strain. Now, leading companies can move from

product ideas to commercial levels in record time with

minimal human interference, a concept unimaginable

only a few years ago. Amyris, for example, has completed

phase one of their DARPA collaboration, building

400 strains for 400 different molecules in record time.

At the same time, Ginkgo Bioworks and Zymergen are

growing rapidly and partnering with the top chemical

companies. Academic initiatives such as iBioFAB [5��],
the MIT-Broad Foundry, SynbiCITE at Imperial Col-

lege, the Edinburgh genome foundry and NUS Synthetic

Biology Foundry in Singapore, have all recently estab-

lished, thus bringing strain engineering capabilities to the

academic world.

The initial focus has been on designing strain faster,

cheaper and more accurately. The strains produced are

typically validated by genomics and characterized by

growth pattern and product accumulation. While machine

learning (ML) is used to develop statistical models from

these data and artificial intelligence (AI) is used to guide

the design process, it is inherently difficult to extract

meaningful learnings about complex biological systems

from design and superficial characterization data only.

A comprehensive omics characterization of strains would

provide a far richer dataset to guide subsequent design.

Recent advances in high-throughput analytics promise to

deliver quantitative omics data at a lower costs. With

efficient integration of these data, it should be possible

to design commercial strains with fewer iterations and

hence at an overall lower cost. This review explores the

frontiers of analytics that can complement high-through-

put strain design to create scientific opportunities for

the near future and contribute to the emerging bioecon-

omy [6].

Automation in cell factory design
Modern strain design starts on a computer, and subse-

quent automation occurs in the design, assembly and

characterization of the strain (Figure 2). Even searching

the literature to guide the design is fully automated. For

example, Semantic Scholar is a search engine that in

addition to words, extract graphs and influential citations.

Iris.AI is a browsing tool that explores papers by concept
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and can be used to predict missing citations in papers. At

the end of the pipeline, Nutonian’s software Eureqa

interprets genetic and biochemical results by formulating

mathematical theories that explain patterns in very large

datasets.

A cellular design to produce a non-native molecule

requires designing heterologous pathways and is often

guided through metabolic network reconstructions [7]

and strain engineering software and algorithm [8–10].

Pathways not existing in nature are also designed in silico
using, for example, Biochemical Network Integrated

Computational Explorer (BNICE), which predicts enzy-

matic steps required to convert a given substrate to a

desired molecule [11] ranking pathways by thermody-

namics, length and yield [12]. Similarly, M-Path builds a

synthetic pathway using an iterative approach to search

enzymatic reactions from databases [13] and eXTended

Metabolic Space (XTMS) predicts novel pathways that

can be introduced into E. coli [14].

The experimental design can be automated using for

example Double Dutch, which uses combinatorial

libraries of pathway variants to reduce human effort

and increase the efficiency of part design [15]. Automa-

tion in the building cycle includes tools such as J5 or

Raven, which guide simultaneous assembly of multiple

DNA segments [16,17] and are compatible with public

libraries of promoters, terminators and RBS [18��]. Once

the pathway has been designed, liquid handling robots

can build, transfer (using CRISPR/CAS9 or other meth-

ods) and select clones automatically (Figure 2).

Industrial biofoundries are capable of constructing hun-

dreds of production strains per week each strain contain-

ing an assembly of up to 20 new genes. The strains are

characterized in an automated culture system and one or

more samples collected per strain for molecular charac-

terization. Integrated, high-throughput analytics is critical

to close the loop. The depth (and cost) of characterization

must be weighed against the cost of strain construction

and the expected gain from analytics, which changes

across the engineering cycle. Early in the cycle, when

identifying good parts is critical, a simple concentration

measure may be adequate. Later, when the highly

expressed heterologous pathway interacts with cellular

34 Analytical biotechnology

Figure 1

1
2

2
3

2
3

2 3

3

AATCGCGCATTTTCCGATATA
TCCGG

Build

Test

Design

G
en

om
e

T
ra

ns
cr

ip
to

m
e

P
ro

te
om

e
F

lu
xo

m
e

M
et

ab
ol

om
e

y8

y7

y6

y5

y3

HT

N
G

 s
eq

ue
nc

er
s

U
P

LC
, L

C
M

S
, G

C
M

S

Genome scale and machine learning
models to guide automated strain design 

Le
ar

n
Current Opinion in Biotechnology

Biofoundries are automated platforms for strain design integrating biology with software and robots at high-throughput (HT). Computer-aided

design is used to develop strains layouts that are executed on robots through computer-aided manufacturing. The strains are tested using

automated fermentation and analytics and the data returned to the designer. Through iterations of design–build–test cycles, machine learning

algorithms interpret large datasets to achieve deep learning of the biosystems. The learning achieved through DNA sequencing, mRNA

sequencing, protein quantification and fluxomics is far deeper through the computer than humanly possible. Technological advances in biology

and incorporation with AI algorithms are opening up the possibility of automating, complex, non-routine cognitive tasks. The learning, deeply

enhanced through very large datasets from the omics datasets, can accelerate the learning and design to advance understanding of biological

systems.
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