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The impact of intracellular spatial organization beyond classical

compartments on processes such as cell signaling is

increasingly recognized. A quantitative, mechanistic

understanding of cellular systems therefore needs to account

for different scales in at least three coordinates: time, molecular

abundances, and space. Mechanistic mathematical models

may span all these scales, but corresponding multi-scale

models need to resolve mechanistic details on small scales

while maintaining computational tractability for larger ones.

This typically results in models that combine different levels of

description: from a microscopic representation of chemical

reactions up to continuum dynamics in space and time. We

highlight recent progress in bridging these model classes and

outline current challenges in multi-scale models such as active

transport and dynamic geometries.

Addresses
1Department of Biosystems Science and Engineering and Swiss

Institute of Bioinformatics, ETH Zürich, Basel, Switzerland
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Introduction
Rapid developments of primarily imaging-based technolo-

gies have revealed the structural and dynamic richness of

life at the single-cell level. Structural organization inside

cells reaches substantially beyond classical membrane-

delimited compartments and stochastic dynamics resulting

from low copy numbers of molecules are increasingly

recognized as an important contributor to cellular functions

such as information processing [1]. Correspondingly, cur-

rent cell biology seeks to answer a variety of questions

considering drastically different scales, and covering a

variety of levels of detail: from the atomistic up to entire

cells in space, from picoseconds of enzyme structure fluc-

tuations up to years of population dynamics in time, and

from single molecules to crowded macromolecular envir-

onments in terms of molecular abundances. While experi-

mental methods such as multi-scale imaging [2] may even-

tually bridge some of these scales, we argue that

computational or mathematical modeling is in a unique

position to integrate knowledge of varying levels of detail

and a variety of heterogeneous experimental data.

Using cell signaling as an example, systems biology models

have been very successful in achieving a holistic and

quantitative understanding of the ‘signaling ballet in space

and time’ [3]. Typical systems biology models in this

domain, however, use classical systems of ordinary differ-

ential equations (ODEs) that ignore spatial distributions of

molecules and assume that all chemical species are abun-

dant enough to warrant treatment as a concentration field

(Figure 1) [4,5]. To increase spatial resolution, classical

partial differential equation (PDE) modeling can describe

the evolution of concentrations in time and space; it leads to

a purely deterministic model on a spatial domain that is

discretized by a mesh for which the temporal evolution of

the solution is computed (Figure 1) [6]. To increase molec-

ular resolution, stochastic models based on solving the well-

mixed chemical master equation (CME) usually employ

simulation algorithms to infer noise statistics from sampled

trajectories [7]. Importantly, efficient simulation algorithms

exist for all three model classes, for instance a stochastic

simulation algorithm with a runtime that is independent of

the number of possible reactions [8].

However, while the most prevalent type of model is

single-class (using only one of the modeling approaches

above) and single-scale (covering only a single spatial,

temporal, and abundance scale) [9], biological complexity

often requires analyzing phenomena on different tempo-

ral and spatial scales as discussed above [5]. The main

challenge of multi-scale models is to resolve the necessary

mechanistic details on short time-scales, length-scales,

and low abundance-scales while maintaining computa-

tional tractability for longer and higher ones. This typi-

cally results in multi-class models that combine different

levels of description. For example, low-abundance spe-

cies may co-exist with high-abundance species in the

same model, making purely stochastic simulation com-

putationally expensive and inefficient. Fully determin-

istic treatment, in contrast, can lead to inaccurate results

due to the low abundance species. High spatial resolution

— which leads to low molecule counts per compartment
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and therefore increases stochasticity — further increases

demand for hybrid methods, that is, multi-class

approaches that combine stochastic and deterministic

representations of cell states.

Over the past years, substantial effort was put into bridg-

ing modeling approaches with the purpose of both eluci-

dating the mechanistic basis of more coarse-grained

modeling approaches, and enabling multi-scale models

that use the most adequate and computationally efficient

approach for each scale considered. For example, efficient

hybrid methods that maintain the accuracy of the solution

have recently been developed both for simulating spa-

tiotemporally resolved [10] and well-mixed [11,12] mod-

els. Here, we summarize recent developments of dynamic

models based on the underlying physics and chemistry of

the biological process considered, which will eventually

enable the simulation of large-scale models that accu-

rately account for microscopic phenomena. While statis-

tical and machine learning models [13] are undoubtedly

useful and rising in popularity, they fall outside our scope.

We will restrict ourselves to recent applications and

methodological progress covering the scales from molec-

ular detail, via protein complexes and sub-cellular com-

partments, up to the cellular scale. Such models have

shed light on a variety of phenomena such as cytoplasmic

crowding, intracellular transport, intracellular signaling,

and control of cell polarization and movement.

Reaction, diffusion, and crowding
A widespread issue in in vivo modeling is accounting for

the effects of macromolecular crowding agents [14�] on
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Spatio-temporal modeling approaches. Reaction rate equation (RRE) models (top left), the most common model class in systems biology that

relies on ordinary differential equations (ODEs), disregards space and tracks only the mean of the concentrations (blue) over time. To introduce

space in deterministic approaches, partial differential equation (PDE) models track continuous concentrations on mesh nodes and use basis

functions to interpolate in the interior, coarse-graining the discrete nature of reacting and diffusing molecules. To increase molecular resolution

compared to RRE models requires a stochastic approach; in a system that is assumed to be well-mixed, the chemical master equation (CME)

captures how molecules react with reaction propensities depending on molecule counts. Combining increased molecular and spatial resolution is

achieved by discretized-geometry, subvolume-based stochastic approaches. The reaction-diffusion master equation (RDME) partitions space into

discrete subvolumes in which molecule counts (blue) are tracked. In these subvolumes, molecules react stochastically, and they diffuse with

corresponding diffusion propensities for jumps of molecules from one subvolume to an adjacent one (violet). Continuous-geometry, particle-based

stochastic approaches yield the highest resolution. In Brownian dynamics (BD), each chemical species is represented as a hard-shell sphere with

an explicit position (blue), an interaction radius (orange dotted) at which a molecule reacts (reacting particles in color), and a collision radius (black

dotted) at which molecules collide when moving by diffusion (violet). When the simulation advances in time, the particles diffuse, collide and react

accordingly. Smoluchowski dynamics considers only the reacting particles (orange reaction radii) and it idealizes particles as points (blue), leading

to much faster simulations because collisions of non-reacting particles are neglected.
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