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With rapid improvements in next-generation sequencing

technologies, our knowledge about metabolism of many

organisms is rapidly increasing. However, gaps in metabolic

networks exist due to incomplete knowledge (e.g., missing

reactions, unknown pathways, unannotated and misannotated

genes, promiscuous enzymes, and underground metabolic

pathways). In this review, we discuss recent advances in gap-

filling algorithms based on genome-scale metabolic models

and the importance of both high-throughput experiments and

detailed biochemical characterization, which work in concert

with in silico methods, to allow a more accurate and

comprehensive understanding of metabolism.
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Introduction
A genome-scale metabolic model is a mathematical repre-

sentation of the metabolic capabilities of an organism,

which is inferred primarily from genome annotations.

Such models have shown great utility in predicting bio-

logical capabilities, metabolic engineering, and systems

medicine [1–4]. A draft model is often generated auto-

matically by software platforms, which use genome anno-

tations of a specific organism and connect genes to meta-

bolic reactions using reference databases [5,6]. A draft

model has to be further refined and evaluated in multiple

steps to ensure its quality [5,6]. This refinement and

evaluation process includes gap-filling, which improves

the network connectivity by modifying content of the

metabolic model. Gap-filling analyses can lead to discov-

eries of missing reactions, unknown pathways, unanno-

tated and misannotated genes, as well as promiscuous

enzymes and underground metabolic pathways. Classic

gap-filling algorithms have been reviewed previously by

Orth and Palsson [7]. These algorithms generally include

three steps: detecting gaps, suggesting model content

changes (i.e., add/remove reactions, change biomass

compositions, or change reaction reversibility), and iden-

tifying genes responsible for the gap-filled reactions

(Figure 1). In the first step, gap-filling algorithms identify

dead-end metabolites (metabolites which cannot be con-

sumed or produced in the network), and/or inconsisten-

cies between model predictions and experimental data (e.

g., growth phenotypes). They then solve for a set of

reactions from metabolic databases of potential reactions

that if added to the metabolic model ‘activate’ dead-end

metabolites or resolve the inconsistencies. In the third

step, some gap-filling algorithms discover genes that

could be responsible for these reactions, which can be

further tested biochemically or genetically. A simple gap-

filling example is illustrated in Figure 2. Here, we first

review recent gap-filling methods, which are more effi-

cient or operate under different assumptions. Then we

discuss how advances in experimental techniques have

significantly advanced gap-filling methods by identifying

model-data inconsistencies. Finally, we describe recent

studies that have used gap-filling analyses to discover the

promiscuous functions of enzymes.

Advances in gap-detection and reaction-
addition algorithms
Some recent algorithms aim to detect and fill gaps more

efficiently than earlier gap-filling algorithms [7]. For exam-

ple, FASTGAPFILL [8] is a scalable algorithm that com-

putes a near minimal set of added reactions for a compart-

mentalized model. Another method, GLOBALFIT [9],

reformulates the mixed integer linear programming prob-

lem of gap-filling into a simpler bi-level linear optimization

problem. It efficiently identifies the minimal set of net-

work changes needed to correct multiple in silico predic-

tions that are inconsistent with in vivo observations simul-

taneously. Meneco [10] and a hybrid metabolic network

completion algorithm [11] reformulate the reaction-addi-

tion problem using answer set programming, a declarative

programming paradigm intended to solve difficult combi-

natorial search problems. Their usage of answer set pro-

gramming allows for stoichiometry constraints to be
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violated, potentially resulting in solutions which are less

biased by the inaccurate stoichiometry of a model. The

hybrid metabolic network completion approach combines

answer set programming with linear stoichiometry con-

straints, and offers a better solution for restoring highly

degraded models [11].

Algorithms, such as GAUGE [12�], have been developed

to exploit alternative mechanisms for gap-identification.

GAUGE exploits flux coupling analysis (FCA) [13] that

detects how two reactions depend on each other. Using

FCA, GAUGE finds gaps involving genes that are associ-

ated with fully dependent reactions but show uncorre-

lated expression patterns. However, GAUGE can only

analyze a subset of a model where gene-protein-reaction

(GPR) associations are defined and isozymes or multi-

functional genes do not create possibilities for uncorre-

lated gene expression patterns.

Some algorithms exploit alternative mechanisms for add-

ing reactions. The novel algorithm DEF [14] is based

upon filling reactions to ‘activate’ dead-end metabolites

in a manner similar to eukaryotes engulfing mitochondria

to find the most efficient pathways for consuming oxygen.

Following this quasi-endosymbiosis theory, DEF aims to

add reactions that maximize production/consumption of

dead-end metabolites in the original model. A DEF

solution could contain more reactions that are biologically

reasonable compared to a parsimonious gap-filling solu-

tion, which often is a minimal set of reactions.

Inherently different from all algorithms mentioned

above, pattern-based gap-filling algorithms do not contain

an explicit gap-identification or reaction-addition step. In

a metabolite pattern and probabilistic method [15], fea-

ture propagation Markov models (HMMs) are used to

rank potential gap-filled reactions by how closely they are

related to the network. In MATBoost and BoostGAP-

FILL [16,17�], a training incidence matrix, S, with artifi-

cial gaps is created by deleting reactions randomly from a

network. Then a machine learning technique, matrix

factorization, completes the missing entries creating
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Steps, input data, and computational algorithms of gap-filling. First, dead-end metabolites, in silico and in vivo inconsistencies, metabolomics

data, and knockout phenotypes allow detection of gaps in metabolic models. Then, the model content (i.e., reactions and biomass compositions)

is changed to resolve these inconsistencies. In this step, missing reactions can be added from databases, and network topology analysis can rank

these potential reactions. Metabolomics and 13C fluxomics data could also suggest reactions that should be included in the model. Finally, the

genes responsible for the filled gaps are identified using sequence similarity, genomic-context data, genomic functional selections, or knockout

phenotypes and are verified by biochemical characterization. Similarly, promiscuous enzymes and underground metabolic pathways can also be

identified when analyzing the gaps in the models.
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