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Recent research has shown that the microbiome — a collection

of microorganisms, including bacteria, fungi, and viruses, living

on and in a host — are of extraordinary importance in human

health, even from conception and development in the uterus.

Therefore, to further our ability to diagnose disease, to predict

treatment outcomes, and to identify novel therapeutics, it is

essential to include microbiome and microbial metabolic

biomarkers in Systems Biology investigations. In clinical studies

or, more precisely, Systems Medicine approaches, we can use

the diversity and individual characteristics of the personal

microbiome to enhance our resolution for patient stratification. In

this review, we explore several Systems Medicine approaches,

including Microbiome Wide Association Studies to understand

the role of the human microbiome in health and disease, with a

focus on ‘preventive medicine’ or P4 (i.e., personalized,

predictive, preventive, participatory) medicine.
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Characterizing the human microbiome
In recent years, Systems Biology has revolutionized our

discovery of biomarkers to prevent, diagnose, and treat

diseases. For example, the personalized diagnosis of

HER2 breast cancer is one of the first examples imple-

mented at the clinical level [1]. Systems Biology

approaches allow us to make sense of the vast amount

of data generated by ‘-omics’ technologies, such as geno-

mics, transcriptomics, metabolomics, and proteomics,

through statistical, computational, and mathematical

approaches that enable us to reveal the emergent proper-

ties of studied systems.

The Human Microbiome is heterogeneous between body

sites (e.g. skin, gut, vagina), is distinctly personal [2],

evolves over our life span [3], and has been implicated in,

among other conditions, obesity [4] and depression [5�].
Clinical studies to characterize the microbiome must

consider numerous elements [6�], including cohort selec-

tion, participant attrition, sample size, experimental

design, sample collection, transportation and preserva-

tion, and more. Sample size is crucial to achieve statistical

power, though few methods are currently available to

establish a priori sample size for microbiome studies [7].

Many microbiome studies suffer from small sample sizes

that may not capture the variability of the system, and we

possess limited understanding of how to calculate sample

size for longitudinal investigations. These limitations

likely result from a lack of information about variability,

which has led to a number of large scale efforts aimed at

characterizing data from groups of participants in an

attempt to quantify the variance in different traits

[8��,9��]. For the microbiome, crowdsourcing efforts, such

as American Gut (www.americangut.org), provide a

unique opportunity to create data resources that can be

used to predict statistical power for clinical studies.

To perform a Microbiome Wide Association Study

(MWAS) [6�], it is necessary to profile the microbiome

to identify biomarkers that can be associated with host

traits. The microbiome can be characterized using 16S/

18S/ITS rRNA amplicon sequencing to identify the rela-

tive abundances of the different species, shotgun meta-

genomic sequencing to identify the organisms functional

potential, metatranscriptomics (RNA-seq) to determine

their functional response to change, metabolomics to

identify microbial products, meta-proteomics [10]

(UPLC-MS) to identify the enzymes being produced,

and imaging (e.g. 3D cartography [11�]) to visualize the

spatial structure of the microbiome. The most common

method is amplicon sequencing, usually using 16S rRNA

[2,3] amplicons to describe bacterial and archaeal diver-

sity, community structure, and composition of the micro-

biota. The benefit of amplicon sequencing is that it is

inexpensive (<$20 a sample), is fast, and provides easy-

to-interpret biomarker units. Traditionally, these bio-

markers have been known as operational taxonomical

units (OTUs) and were clusters of similar taxa (e.g.

QIIME [12], Mothur [13]); however, new computational

techniques have enabled this data to be probed at a

greater taxonomic resolution [14��,15�,16�], enabling

the identification of biomarkers potentially at strain-level

resolution (Table 1). Once that amplicon sequencing has
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been processed and annotated to known bacterial taxa,

amplicon sequence data needs to be treated or normal-

ized to avoid experimental and technical artifacts

[12,17,18]. Subsequently, normalized amplicon data can

be processed through computational pipelines (Table 1)

to study the community structure (e.g., alpha and beta

diversity) and to perform the statistical analysis that will

link these biomarkers to host traits (e.g. phyloseq [19],

QIIME [12], Mothur [13]).

Amplicon sequencing is limited, however, by the taxo-

nomic resolution (i.e. you cannot usually identify

microbes to the species or strain level), and it provides

no information on the functional capacity of the

microbes, although techniques exist to computationally

predict microbial function for members of the ecological

community that have a known sequence (e.g. PICRUSt

[20]). Therefore, to characterize microbial biomarkers

such as genomic strain or functional gene, shotgun

metagenomics is used, whereby the total genomic

DNA of a sample is randomly sequenced [21,22��].
While this provides less coverage of the total community

composition, it does provide greater taxonomic resolu-

tion and potential functional information, which

improves the ability to identify associations with host

traits and patient stratification. However, shotgun meta-

genomic sequencing is expensive ($300–500 a sample),

and analysis is more labor intensive than human geno-

mics, mostly because there are no reference genomes for

a majority of the organisms in a sample, which makes it

harder to interpret the sequencing data [23�]. However,

there are a number computational pipelines, such as

MetAMOS [24], Xander [25�], and Anvi’o [26�], that

reduce the workload (Table 1).

Importantly, metagenomic analysis only describes the

genetics and functional potential of the microbiome, as

it does not characterize the genes that are actively tran-

scribed and translated into proteins. Metatranscriptomics

[27] and metaproteomics [28] can be used to explore

these phenomena, but they are more expensive than

amplicon or metagenomic sequencing — metatranscrip-

tomics can cost more than $500 per sample, while meta-

proteomics can cost more than $1000 per sample. Meta-

transcriptomics is easier to implement experimentally

and computationally [29�] than meta-proteomics; in the

latter, the cells have to be isolated and the extracted

proteins must be analyzed using LC-MS methods [30�].
Metaproteomics provides useful biomarkers, as these are

the active proteins and enzymes that are influencing host

traits, but cost and difficulty of sample preparation limit

the application of this approach.

The culmination of genetics, transcriptomics, and prote-

omics is of course the metabolome, which represents the

small molecules generated by the individual cell or com-

munity of microbes. The influence of microbial metab-

olites of human health is well recognized [31�]. In fact,

metabolite biomarkers can often show the strongest asso-

ciation with host traits, likely because they have direct

influence on host function [31�,32]. Microbial metabo-

lites, such as short chain fatty acids, have been shown to

have a significant influence on local inflammation [32],

hormonal balance [9��], and even on mitochondrial activ-

ity [33�]. The presence of microbe-related metabolites is

commonly determined by gas or liquid chromatography

followed by mass spectrophotometry [29�], and the cost

can vary from a few dollars for single metabolites to more

than $100 per sample for an untargeted analysis of the
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Table 1

Summary of the most common experimental and computational methods employed in Systems Microbiome Medicine

MOLECULAR
GENOTYPING

MICROBIOME
FEATURES

STATIC DATA DYNAMIC DATA

OTU identification
(16S rRNA)

QIIME
Mothur

Sub-OTU identification
(16S rRNA)

DADA2
Deblur

Oligotyping

Genome reconstruction
(shotgun)

Anvi’o
MetaAMOS

Xander

Microbiome
metabolism

PICRUST
HUMAnN

CASINO (GEMs)

Host-microbiome interactions & Multi-
omics interactions

DESeq2
matagenomeSeq

LefSE
LinearLog-Contrast with I1 penalization

Random Forest
Gradient bootstrapping tree

Neural networks
Spearman correlation

Procrustes
Co-inertia

Spearman correlation

Host-microbiome interactions &
Multi-omics interactions

Dynamic hierarchical clustering & LefSE
Dynamic Bayesian Networks

Neural networks
SVAR

Lotka-Voltera
Agent Based models

Microbiome
structure (e.g.,
alpha and beta

diversity)
Phyloseq

QIIME
Mothur

Co-abundance networks
SparCc

CCLasso
SPICE-EASI

Causation networks
Dynamic Bayesian Networks

SVAR
MDSINE (Lotka-Voltera)
LIMITS (LOTKA-Voltera)
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