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Computational modeling has significantly impacted our ability

to analyze vast (and exponentially increasing) quantities of

experimental data for a variety of applications, such as drug

discovery and disease forecasting. Single-scale, single-class

models persist as the most common group of models, but

biological complexity often demands more sophisticated

approaches. This review surveys modeling approaches that are

multi-class (incorporating multiple model types) and/or multi-

scale (accounting for multiple spatial or temporal scales) and

describes how these models, and combinations thereof,

should be used within the context of the problem statement.

We end by highlighting agent-based models as an intuitive,

modular, and flexible framework within which multi-scale and

multi-class models can be implemented.
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Introduction
Computational modeling is a powerful tool that impacts

science and society in remarkable ways. Major applica-

tions include accelerated design and development of drug

therapeutics, as well as integration of theory and experi-

ments to advance basic science. In drug therapeutics and

in view of a rapidly approaching patent cliff for several

major drugs, pharmaceutical companies have embraced

computer-aided drug design through techniques such as

binding pocket modeling, molecular dynamics simula-

tions, and pharmacokinetic modeling [1–3]. Models of

disease and organ level physiology help researchers pre-

dict system response to therapeutic perturbations and

design clinical trials [4]. On a larger scale, computational

models have also been used to investigate incidence,

spread, and intervention for diseases such as Ebola and

West Nile virus [5–8].

In basic science, computational models predict complex

behavior, elucidate regulatory mechanisms, and inform

experimental design [9,10]. For instance, a quorum sens-

ing model in Agrobacterium described complex, experi-

mentally observed behavior of the organism and provided

experimentally-testable hypotheses for the evolutionary

significance of the sensing phenomenon [11]. A previous-

ly longstanding question in biology involving the regula-

tory mechanism driving E. coli chemotaxis was also

resolved by iteration between a computational model

of chemotaxis signal transduction and experimental

validation with mutant strains [12]. Simulations of the

Drosophila segment polarity network by von Dassow

et al. revealed that no parameter sets produced the

observed behavior, leading the authors to amend their

understanding of the network and propose new candidate

mechanisms for further experimentation [13].

With the rapid expansion and improvement of experi-

mental techniques, scientists are generating unprece-

dented amounts of high-throughput, high-quality

biological data [14]. This exponential growth of multi-

dimensional biological data requires a parallel growth in

quantitative modeling methods of such data to explain

non-intuitive observations [14,15]. The appropriate mod-

el group and framework necessary for attaining biologi-

cally relevant insight depends on context and data.

Commonly, these models are single-scale and single-

class; Figure 1 outlines a high-level summary of these

frameworks used at different biological length scales of

interest. At one extreme, models considering the inter-

actions of molecules and protein structure tend to be

discrete and based on first principles. At the other ex-

treme, models describing single cells and cell populations

tend to be more continuous. Across these scales, rule-

based models are less common than equations-based

models.

While we acknowledge the existence of countless addi-

tional length-scales — including organs, organ systems,

individuals, and populations — as well as countless

time-scales, these layers of resolution are outside the

scope of this review. Statistical learning theory also falls

outside the scope of this review. In the following sec-

tion, we describe fundamental attributes of computa-

tional models to establish a common vocabulary. Next,

we highlight attributes of multi-scale and/or multi-class

models (as well as combinations thereof) and their

unique advantages for describing complex biological

phenomena.
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Classes and scales of computational models
A model represents a real-life system or phenomenon of

interest [16,17]. Unlike physical models, composed of

tangible parts, computational models are mathematical

abstractions of a system [16]. State variables describe the

model at an instance of a computational simulation and

parameter variables characterize the model itself [16].

Consider a model of a single cell undergoing mitosis: a

state variable could denote the phase of the cell cycle at a

given time point, whereas the duration of the phase would

depend on the value of a parameter variable.

Models can be classified according to two characteristics:

(i) the evolution of state variables and (ii) the computa-

tional repeatability of the output, or response, trajectory.

Evolution describes how state variables change: continuous
variables take on any value, discrete variables take on

integer values. Repeatability characterizes the expected

output trajectories from a given set of inputs. Deterministic
models produce identical output response profiles pro-

vided identical initial state and parameter conditions,

whereas stochastic models allow random or probabilistic

events such that a single simulation given identical initial

state and parameter conditions can produce a family of

response profiles [16]. We include a third characteristic of

classification, specification, which identifies how the inter-

actions among state variables are defined. Rule-based
models use qualitative rules to describe interactions, while

equation-based models use mathematically formulated

ones [18,19]. Thus, a model class is given by its evolution,

reproducibility, and specification characteristics. We

define models that incorporate multiple model classes in

a single framework as multi-class; otherwise, the model is

single-class.

In parallel, we define the scale, temporal or spatial, of the

model. By definition, multi-scale models explicitly incor-

porate two or more levels of resolution [20,21]. Biological

systems are inherently multi-scale: cell population dy-

namics rely on intercellular protein signaling, which relies

on fluctuations of intracellular protein concentrations, and

so on [21]. Existing reviews offer detailed discussion of

multi-scale models for biological systems [20,22,23]. At

the center of Figure 2, the four different groups of models

are organized based on increasing multiplexity of class and

scale.

When modeling complex biological systems, and regard-

less of approach, the multiplexity of a computational

model should be defined by the context of the problem

statement, the type of answer sought (i.e., qualitative vs.

quantitative) and the experimental data. Disparities be-

tween the modeling framework and problem statement

can limit predictive capacity and biological insight. A

model is too detailed if the training data cannot fully

support the model structure or parameter estimation,

which can result in over fitting and unnecessary compu-

tational expense and be revealed through parameter

identifiability or uncertainty analysis. A model is too

simple if it is unable to capture the possible depth or

breadth of understanding that a qualitative and/or quan-

titative data set provides. Different aspects of cancer, for
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Number of PubMed ‘hits’ highlight trends in modeling framework selection across different scales. Representative model frameworks for each of

the different model classes are used. The color bar highlights molecular dynamics models of proteins as one of the most published frameworks

and rule-based approaches as one of the least explored. Search strings used to generate these numbers are provided on our website.
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