ELSEVIER

Contents lists available at ScienceDirect

Journal of Biotechnology

journal homepage: www.elsevier.com/locate/jbiotec

Short communication

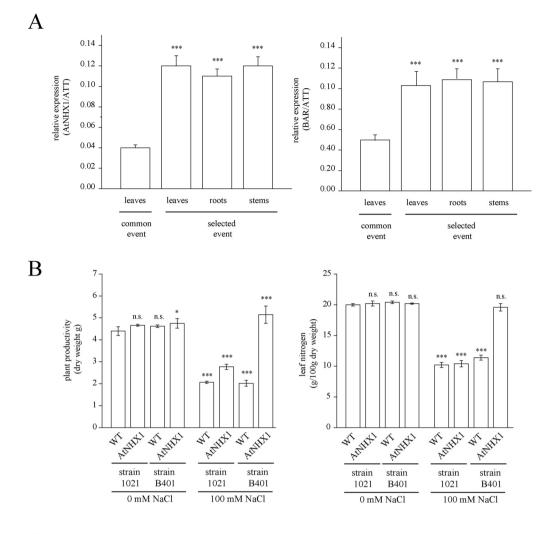
High-quality forage production under salinity by using a salt-tolerant AtNXH1-expressing transgenic alfalfa combined with a natural stress-resistant nitrogen-fixing bacterium

Margarita Stritzler^{a,b}, Pagano Elba^b, Carolina Berini^c, Cristina Gomez^b, Nicolás Ayub^{a,b}, Gabriela Soto^{a,b,*}

- ^a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
- ^b Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- ^c Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CABA, Argentina

ARTICLE INFO

Keywords: Legume Alfalfa Transgene Symbiosis Stress


ABSTRACT

Alfalfa, usually known as the "Queen of Forages", is the main source of vegetable protein to meat and milk production systems worldwide. This legume is extremely rich in proteins due to its highly efficient symbiotic association with nitrogen-fixing strains. In the last years, alfalfa culture has been displaced to saline environments by other important crops, including major cereals, a fact that has reduced its biomass production and symbiotic nitrogen fixation. In this short communication, we report the high forage production and nutrient quality of alfalfa under saline conditions by alfalfa transformation with he AtNHX1 Na⁺/H⁺ antiporter and inoculation with the stress-resistant nitrogen-fixing strain *Sinorhizobium meliloti* B401. Therefore, the incorporation of transgenic traits into salt-sensitive legumes in association with the inoculation with natural stress-resistant isolates could be a robust approach to improve the productivity and quality of these important nitrogen-fixing crops.

Since the pioneer characterization of the vacuolar Na+/H + antiporter AtNHX1 in Arabidopsis thaliana by Blumwald's team at University of Toronto in Canada (Apse et al., 1999), several articles have described AtNHX1-homologous genes from different plant species. In addition to the understanding of the direct and indirect roles of these antiporters in abiotic stress adaptation, the massive expansion of the study of AtNHX1 and AtNHX1-related genes has enabled the experimental corroboration of the high efficiency of their heterologous expression to improve salt tolerance in several crops (Chen et al., 2008; He et al., 2005; Li et al., 2010; Li et al., 2011; Sahoo et al., 2016; Zhang and Blumwald, 2001). However, there are some technical and biological factors that have limited the commercial use of this technology. These include the need to produce events with specifically high transgene expression and the possibility to maintain the interactions of transgenic crops with beneficial microbes under saline conditions. In alfalfa, these two constraints are exceptionally hard, because it is necessary to produce a vast number of events to find one showing high-level transgene expression (Rogan and Fitzpatrick, 2004), and because, under saline conditions, the symbiotic alfalfa-Sinorhizobium interaction for nitrogen fixation is impaired (Palma et al., 2013). To bypass the first constraint, we have previously developed a highly efficient process for the transformation of the highly regenerative alfalfa clone C23 and for the rapid and inexpensive production of transgenic alfalfa libraries by using the binary vector pPZP200BAR (Jozefkowicz et al., 2016). Using this framework, we were able to produce a transgenic alfalfa event (alfalfa-AtNHX1) that combines high-level and ubiquitous expression of the AtNHX1 gene (Fig. 1a). To bypass the second constraint, we used the nitrogen-fixing bacterium Sinorhizobium meliloti B401, a natural stress-resistant strain isolated from alfalfa monoculture under water-deficit conditions by the National Instituteof AgriculturalTechnology from Argentina (http://inta.gob.ar). Contrary to alfalfa plants inoculated with the stress-sensitive phenotype of the model strain Sinorhizobium meliloti 1021 (Galibert et al., 2001), those inoculated with the stress-resistant strain B401 show high nitrogen fixation rates in semiarid environments (Jozefkowicz et al., 2017), suggesting that this natural stress-resistant strain is an adequate inoculant for alfalfa production under stress conditions.

In concordance with the general classification of legumes as salt-sensitive crop species (Läuchli, 1984), moderate saline soils displaying Electrical Conductivity (EC) of 10 dS/m, mainly due to NaCl, reduce alfalfa yield by about 50% and almost completely inhibit alfalfa no-dulation under field conditions (Smith, 1994). In this study, we

^{*} Corresponding author at: De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina. E-mail addresses: soto.gabrielacintia@inta.gob.ar, soto.gabrielacinthia@inta.gob.ar (G. Soto).

WT AtNHX1

900 mM NaCl

Phenotypic Segregation Data for salt-tolerant transgenic trait					
Generation	Number tested	Number	AtNHX1	AtNHX1	chi-square
		tolerant	% tolerant	% expected	significance test
T1	138	67	48.5	50	n.s.
T2	401	194	48.3	50	n.s.
T3	325	162	49.8	50	n.s.

n.s. = not significant

Fig. 1. Combination of salt-tolerant transgenic alfalfa germplasm with natural stressresistant nitrogen-fixing bacteria to maximize high-quality legume forage production under physiological saline stress conditions. (a) We screened two transgenic libraries containing 2000 putative independent events of alfalfa transformed with the binary vector pPZP200BAR-AtNHX1 (Additional File 1) by Agrobacterium tumefaciens (Jozefkowicz et al., 2016) for glufosinate and salinity tolerance. We selected an event showing both herbicide tolerance (10 mg/L glufosinate) and salinity tolerance (1.2 M NaCl). A representative RT-qPCR assay shows the high-level and ubiquitous expression of the AtNHX1 and BAR genes in the selected event compared to a random-selected event. The expression of the herbicide tolerance in these events was confirmed by glufosinate tolerance assays under greenhouse conditions (Additional File 2). (b) The selected transgenic event showing high and ubiquitous expression of the AtNHX1 gene was crossed manually with the unrelated wild-type alfalfa clone 19-17 by using transgenic parental plants as the pollen donor. The progeny from this cross was discriminated between wild-type (WT) and transgenic (AtNHX1) plants by PCR assays against the AtNHX1 gene (Additional File 3). Biomass production and nitrogen content in 4-month-old WT and AtNHX1 plants inoculated with the model strain 1021 or the stress-resistant bacterium B401 were quantified as previously described (Fox et al., 2016; Jozefkowicz et al., 2017) by using 1-L pots containing a mixture of soil:vermiculite (1:1) and irrigated with tap water supplemented with 100 mM NaCl to induce nitrogen deficit and saline stress, respectively. Biomass production, nitrogen content and nodule number were also analyzed in 8-month-old plants, supporting that the alfalfa-Sinorhizobium saline-sensitive phenotype can be completely suppressed by AtNHX1 plants inoculated with strain B401 (Additional File 4). Stable isotope dilution analysis (Fox et al., 2016) and the quantification of the levels of leghemoglobin, free oxygen, ATP and NADPH in nodules (Soto et al., 2013) confirms the high levels of nitrogen fixation in AtNHX1 plants inoculated with strain B401 under saline conditions (Additional file 5) and that nodules from salt-exposed B401treated AtNHX1 plants can provide an optimal microenvironment for nitrogenase activity (Additional File 6), respectively. Each experiment contains 40 individual plants per treatment. All values are mean ± SEM, n = 3 and n = 5 in panels (a) and (b), respectively. Asterisks represent statistically significant differences (*p < 0.05, ***p < 0.001) according to the ANOVA followed Dunnett's contrast test. (c) Rapid and inexpensive analysis of the salt-tolerant

transgenic trait associated with the AtNHX1 gene in transgenic alfalfa progenies. The selected transgenic event showing high and ubiquitous expression of the AtNHX1 gene was crossed manually with a mix of wild-type alfalfa cultivars by using transgenic parental plants as the pollen donor through three backcrossing generations (T1, T2 and T3). The progeny from this cross was molecularly discriminated between wild-type (WT) and transgenic (AtNHX1) plants as described above. The expression (up) and the Mendelian inheritability (down) of the transgenic trait was analyzed in 5-L pots containing a mixture of soil:vermiculite (3:1) and irrigated with tap water supplemented with 900 mM NaCl to induce lethal stress in the nontransgenic plants. Statistical significance for the segregation data was determined using Chi square analysis.

Download English Version:

https://daneshyari.com/en/article/6490305

Download Persian Version:

https://daneshyari.com/article/6490305

<u>Daneshyari.com</u>