Accepted Manuscript

Title: A highly selective sensor for Cu^{2+} and Fe^{3+} ions in aqueous medium: Spectroscopic, computational and cell imaging studies

Authors: Shyam Lal, Satish Kumar, Sunita Hooda, Pramod Kumar

PII:	S1010-6030(18)30550-1
DOI:	https://doi.org/10.1016/j.jphotochem.2018.07.021
Reference:	JPC 11387
To appear in:	Journal of Photochemistry and Photobiology A: Chemistry
Received date:	24-4-2018
Revised date:	12-7-2018
Accepted date:	16-7-2018

Please cite this article as: Lal S, Kumar S, Hooda S, Kumar P, A highly selective sensor for Cu²⁺ and Fe³⁺ ions in aqueous medium: Spectroscopic, computational and cell imaging studies, *Journal of Photochemistry and Photobiology, A: Chemistry* (2018), https://doi.org/10.1016/j.jphotochem.2018.07.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A highly selective sensor for Cu^{2+} and Fe^{3+} ions in aqueous medium:

Spectroscopic, computational and cell imaging studies

Shyam Lal^a, Satish Kumar^b, Sunita Hooda^a*, Pramod Kumar^c*

^aDepartment of Chemistry, Acharya Narender Dev College (University of Delhi), Kalkaji, New

Delhi 110019, India

^bDepartment of Chemistry, St. Stephen's College (University of Delhi), New Delhi 110007,

India

Graphical abstract

Chemosensor L1 is capable for the detection of biologically important Cu^{2+} and Fe^{3+} ions by absorbance and emission techniques, color visualization, paper strips and fluorescence cell imaging. The actual species responsible for sensing of Cu^{2+} and Fe^{3+} ions were confirmed by spectroscopically and computational studies.

Highlights

- L1 exhibits absorbance and emission responses with Cu²⁺ and Fe³⁺ in aqueous medium.
- The "by-eye" detection of Cu²⁺ and Fe³⁺ was observed by obvious color change of L1.
- ► L1 serves as reversible sensor for Fe³⁺ using EDTA as restoring agent.
- Chemosensor L1 is efficient to detect Fe³⁺ ion in L929 cells.
- **•** Complexation was investigated by spectroscopically and computational studies.

^cDepartment of Chemistry, University of Delhi, New Delhi 110007, India

Abstract: A rationally designed chemosensor L1 (2-(2-amino-4,5-dihydrothiazol-4-yl)-5,5dimethylcyclohexane-1,3-dione) is capable for the detection of biologically important Cu^{2+} and Fe^{3+} ions. The observable change in absorbance and emission in HEPES buffer solution and binding parameters display notable sensing ability of Cu^{2+} and Fe^{3+} ions. From Job's plot and ESI- Download English Version:

https://daneshyari.com/en/article/6492451

Download Persian Version:

https://daneshyari.com/article/6492451

Daneshyari.com