Accepted Manuscript

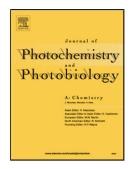
Title: A new "on-off-on" fluorescent sensor for cascade recognition of Hg^{2+} and S^{2-} ion in aqueous medium

Authors: Liyan Wang, Ying Tian, Xianyou He, Bing Zhao, Wenhui Ma, Jia Yang, Bo Song

, 2, 2

PII: S1010-6030(18)30198-9

DOI: https://doi.org/10.1016/j.jphotochem.2018.03.037


Reference: JPC 11206

To appear in: Journal of Photochemistry and Photobiology A: Chemistry

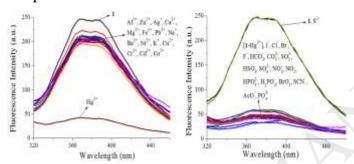
Received date: 12-2-2018 Revised date: 20-3-2018 Accepted date: 22-3-2018

Please cite this article as: Liyan Wang, Ying Tian, Xianyou He, Bing Zhao, Wenhui Ma, Jia Yang, Bo Song, A new "on-off-on" fluorescent sensor for cascade recognition of Hg2+ and S2— ion in aqueous medium, Journal of Photochemistry and Photobiology A: Chemistry https://doi.org/10.1016/j.jphotochem.2018.03.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A new "on-off-on" fluorescent sensor for cascade recognition of Hg^{2+} and S^{2-} ion in aqueous medium


Liyan Wang,* Ying Tian, Xianyou He, Bing Zhao, Wenhui Ma, Jia Yang, Bo Song

College of Chemistry and Chemical Engineering, Qiqihar University, 42 WEN HUA road, Jianhua District, Qiqihar, 161006, China

*Corresponding authors: L. Wang

E-mail address:wlydlm@126.com

Graphical Abstract

A new fluorescent "on-off-on" sensor for cascade recognition of Hg²⁺ and S²⁻ ion in 100% aqueous medium.

Highlights

- The sensor 1 we reported can cascade recognition of Hg²⁺ and S²⁻ ion in 100% aqueous medium.
- The fluorescent detection limits of sensor **1** for Hg²⁺ is 0.41 nM.
- This "on-off-on" switching process could be repeated five times with little fluorescent efficiency loss.

Abstract: A novel Hg^{2+} ion fluorescent sensor **1** has been synthesized based on amide group, sensor **1** showed a highly sensitive and selective response towards Hg^{2+} over other metal ions by reversibly forming a [**1**- Hg^{2+}] complex in 100% aqueous solution. The fluorescence detection limits was 0.41 nM. The Job's plots, the MS analysis and ^{1}H NMR titration experiments implied that there was only the formation of a $1/Hg^{2+}$ complex with 1:1 stoichiometry. Moreover, S^{2-} ion can remove Hg^{2+} from the complex and restore the spectral signal of **1**. This research may enrich the field of multi-functional chemosensors in natural products.

Keywords: Amide group; Cascade recognition; Mercury ion; Sulfide ion

Download English Version:

https://daneshyari.com/en/article/6492576

Download Persian Version:

https://daneshyari.com/article/6492576

<u>Daneshyari.com</u>