Accepted Manuscript

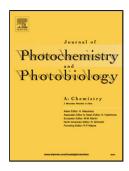
Title: Self-propagation combustion method for the synthesis of solar active Nano Ferrite for Cr(VI) reduction in aqua system

Authors: N.A. Oladoja, E.T. Anthony, I.A. Ololade, T.D.

Saliu, G. ABello

PII: S1010-6030(17)30569-5

DOI: https://doi.org/10.1016/j.jphotochem.2017.11.026


Reference: JPC 11010

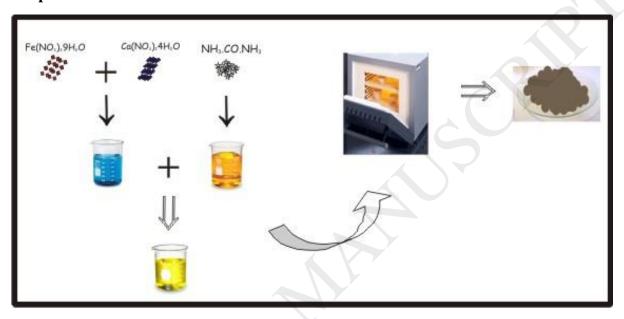
To appear in: Journal of Photochemistry and Photobiology A: Chemistry

Received date: 25-4-2017 Revised date: 1-11-2017 Accepted date: 16-11-2017

Please cite this article as: N.A.Oladoja, E.T.Anthony, I.A.Ololade, T.D.Saliu, G.ABello, Self-propagation combustion method for the synthesis of solar active Nano Ferrite for Cr(VI) reduction in aqua system, Journal of Photochemistry and Photobiology A: Chemistry https://doi.org/10.1016/j.jphotochem.2017.11.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT


Self-propagation combustion method for the synthesis of solar active Nano Ferrite for Cr(VI) reduction in aqua system

Oladoja* N.A. Anthony E.T. Ololade I.A. Saliu T.D. Bello G.A.

Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria

*Corresponding Author E-mail: bioladoja@yahoo.com; nurudeen.oladoja@aaua.edu.ng
*Phone No.: +2348055438642

Graphical Abstract

Preparation of Ferrite using the self-propagation combustion method

Highlights

- Self-propagation combustion method is a facile route to ferrite (FSP) synthesis
- Photocatalytic reduction of Cr(VI) to Cr(III) was achieved using the FSP
- The rate and half-life of photoreduction depends on the initial Cr(VI) concentration
- Carbonate reduced PE of FSP and hyperchromic shift in absorbance of treated water
- Cr(III)-oxalato complex is formed at a certain minimum photoreduction time

Abstract

The study aimed at the development of a facile route to the synthesis of a solar active nano ferrite via the self-propagation combustion protocol. The solar activity of the synthesised ferrite sample (FSP) was determined using the reduction of Cr(VI) to Cr(III) as a case study, in the presence of oxalic acid, as the hole scavenger. The analysis of the time-concentration profile data of the photoreduction reaction with the pseudo first order kinetic equation showed that the rate and half-life ($t_{1/2}$) of photoreduction of Cr(VI) to Cr(III) is dependent on the initial Cr(VI) concentration. The photoreduction efficiency (PE) (%) of the FSP is a function of the initial FSP dosage and the hole scavenger. The determination of the influence of hydrochemistry on the PE (%) showed that Cr(VI) solution pH and ionic strength had no visible negative impact. Aside the presence of carbonate in the Cr(VI) solution, other anionic interfering species (i.e.

Download English Version:

https://daneshyari.com/en/article/6492835

Download Persian Version:

https://daneshyari.com/article/6492835

<u>Daneshyari.com</u>