
ELSEVIER

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

Preparation of Mo- and W-doped $BiVO_4$ fine particles prepared by an aqueous route for photocatalytic and photoelectrochemical O_2 evolution

Akihide Iwase^{a,b}, Shunsuke Nozawa^c, Shin-ichi Adachi^{c,d}, Akihiko Kudo^{a,b,*}

- ^a Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- ^b Photocatalysis international Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
- c Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- d Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

ARTICLE INFO

Article history: Received 18 August 2017 Received in revised form 14 November 2017 Accepted 16 November 2017 Available online 26 November 2017

Keywords:
Photocatalyst
Photoelectrode
Fine particle
Single particle layer
O₂ evolution
Visible light

ABSTRACT

Mo- and W-doped BiVO₄ fine particles with a diameter of 50–200 nm were prepared from Bi₂O₃ and, Mo- and W-doped V₂O₅ by an aqueous route using an aqueous acetic acid solution. The Mo- and W-doped BiVO₄ calcined at 673 K was elongate polyhedral particles grown along with the b-axis, while the non-doped BiVO₄ prepared by the same method was featureless particles. X-ray absorption near edge structure (XANES) and electron spin resonance (ESR) measurements revealed that the Mo⁶⁺ and W⁶⁺ ions were doped at V sites, resulting in the formation of V⁴⁺ in BiVO₄. The Mo- and W-doped BiVO₄ powders showed lower activity for photocatalytic O₂ evolution than the non-doped BiVO₄. In contrast, the Mo- and W-doped BiVO₄ photoelectrodes fabricated by an electrophoresis method using these fine particles gave higher photoelectrochemical performance due to a positive effect of the increase in the n-type character by Mo- and W-doping.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Photocatalytic water splitting of artificial photosynthesis is an attractive reaction to convert solar energy to chemical energy. The systems for water splitting can be divided into a powdered system with one-step or two-step (Z-scheme system) photoexcitation and a photoelectrode system [1–5]. The powdered Z-scheme and photoelectrode systems can employ photocatalysts that have only $\rm H_{2^-}$ or $\rm O_2$ -evolution ability, and hence various photocatalyst materials can be applicable for the systems. In such water splitting systems, $\rm BiVO_4$ has been widely used as an $\rm O_2$ -evolving photocatalyst and photoanode [6–18].

BiVO₄ has three typical phases including scheelite monoclinic, scheelite tetragonal, and zircon tetragonal phases [19–21]. Among them, the scheelite monoclinic phase is a highly active for photocatalytic and photoelectrochemical water oxidation to O_2 using visible light. Moreover, Mo- and/or W-doping drastically

improves the photocatalytic and photoelectrochemical performances of $BiVO_4$ [22–31].

In terms of sacrificial O_2 evolution using AgNO $_3$ as an electron scavenger, relatively large BiVO $_4$ particles with clear facets usually show high activity [32–34]. In contrast, fine particles are favorable for a powder-based photoelectrode to improve the contact between particles and a conductive substrate [35]. In the Z-scheme systems driven by inter particle electron transfer [7], fine particles would be favorable to increase possibility of collision between H_2 -evolving and O_2 -evolving photocatalyst particles. Thus, formation of Mo- and W-doped BiVO $_4$ fine particles has significance.

We previously reported the synthesis of BiVO₄ fine particles with a particle size of $100-200\,\mathrm{nm}$ by stirring $\mathrm{Bi}_2\mathrm{O}_3$ and $\mathrm{V}_2\mathrm{O}_5$ starting materials in an acetic acid solution at room temperature [35]. In the present study, we prepared either Mo- or W-doped BiVO₄ fine particles by the modified process using an acetic acid solution. The states of the Mo and W doped in BiVO₄ were characterized with X-ray absorption near edge structure (XANES) and electron spin resonance (ESR). Their photocatalytic and photoelectrochemical properties were also investigated.

^{*} Corresponding author at: Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. E-mail address: a-kudo@rs.kagu.tus.ac.jp (A. Kudo).

2. Material and methods

M-doped BiVO₄ (M=Mo and W) fine particles were synthesized by stirring Bi₂O₃ and M-doped V₂O₅ powders of starting materials in an acetic acid solution (Fig. S1). M(x at %)-doped V_2O_5 (M=Mo and W) was prepared from V_2O_5 and either MoO₃ or WO₃ by a solid-state reaction at 973 K for 5 h. One gram of M-doped V_2O_5 (M=Mo and W) powder was pulverized by a planetary ball mill (Fritsch Japan: Pulverisette) at 800 rpm for 5 min with zirconium balls (10 g, Φ 1 mm) in pure water (6 mL). Bi₂O₃ (5 mmol) and pulverized Mo- and W-doped V_2O_5 (5 mmol) powders were stirred in 2 mol L^{-1} of an aqueous acetic acid solution at 343 K for 24 h. The 343 K was applied to shorten the synthesis time because more than 1 week was necessary to obtain single phase of BiVO₄ at room temperature [35]. The obtained powder was carefully washed with water using a centrifuge (3000 rpm for 15 min, 3-4 times), and was subsequently calcined at 673 K or 873 K for 5 h in air for

photocatalytic O₂ evolution. The M-doped BiVO₄ powder without calcination was loaded on a tin-doped indium oxide (ITO) transparent conductive substrate (GEOMATEC, HD-TCO) by an electrophoresis method (50 V, 30 s) and subsequent calcination at 673 K or 873 K for 1 h in air for photoelectrochemical measurements.

The crystal phase of the prepared powder was analyzed on an X-ray diffractometer (Rigaku, MiniFlex). Diffuse reflectance spectra were obtained using a UV-vis-NIR spectrometer (JASCO; Ubest-570) equipped with an integrating sphere, and were converted from reflection to absorbance by the Kubelka-Munk method. The specific surface area of the sample was determined by N₂ adsorption using the Brunauer-Emmett-Teller (BET) method (Coulter; SA3100). Morphology of the photocatalyst powder was observed using a scanning electron microscope (Jeol; JSM-6700F). Electron spin resonance (ESR) spectra were recorded at room temperature on an ESR spectrometer (ADANI; SPINSCAN) with a microwave frequency of 9.4 GHz.

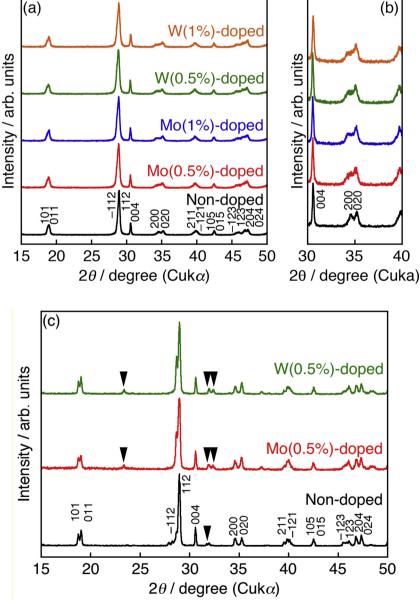


Fig. 1. XRD patterns of non-, Mo-, and W-doped BiVO₄ prepared by stirring starting materials of Bi_2O_3 and, non-, Mo-, and W-doped V_2O_5 in an aqueous acetic acid solution at 343 K for 24h and subsequent calcination at (a,b) 673 K and (c) 873 K for 5 h in air. Triangles represent peaks from impurities.

Download English Version:

https://daneshyari.com/en/article/6492847

Download Persian Version:

https://daneshyari.com/article/6492847

<u>Daneshyari.com</u>