Author's Accepted Manuscript

Improved [FeFe] hydrogenase O₂ tolerance suggests feasibility for photosynthetic H₂ production

Jamin Koo, James R. Swartz

 PII:
 S1096-7176(17)30481-0

 DOI:
 https://doi.org/10.1016/j.ymben.2018.04.024

 Reference:
 YMBEN1429

To appear in: Metabolic Engineering

Received date: 27 December 2017 Revised date: 27 April 2018 Accepted date: 29 April 2018

Cite this article as: Jamin Koo and James R. Swartz, Improved [FeFe] hydrogenase O₂ tolerance suggests feasibility for photosynthetic H₂ production, *Metabolic Engineering*, https://doi.org/10.1016/j.ymben.2018.04.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Improved [FeFe] hydrogenase O_2 tolerance suggests feasibility for photosynthetic H_2 production

Jamin Koo^{a,b}, James R. Swartz^{a,c,*}

^aDepartment of Chemical Engineering, Stanford University, Stanford, CA 94305 ^bDepartment of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea ^cDepartment of Bioengineering, Stanford University, Stanford, CA 94305.

*Corresponding author at: Stanford university, Department of Chemical Engineering, 443 Via Ortega, Shriram Center Rm 275, Stanford, CA 94305, USA. Fax: +1 650 725 7294. *Email-address*: jswartz@stanford.edu.

ABSTRACT

Photosynthetic H_2 production has been a compelling but elusive objective. Here we describe how coordinated bioreactor, metabolic pathway, and protein engineering now suggest feasibility for the sustainable, solar-powered production of a storable fuel to complement our expanding photovoltaic and wind based capacities. The need to contain and harvest the gaseous products provides decisive solar bioreactor design advantages by limiting O_2 exposure to prolific, but O_2 -sensitive H_2 producing enzymes—[FeFe] hydrogenases. CO_2 supply and cell growth can also be limited so that most of the photosynthetic reduction capacity is directed toward H_2 production. Yet, natural [FeFe] hydrogenases are still too O_2 sensitive for technology implementation. We report the discovery of new variants and a new O_2 tolerance mechanism that significantly reduce the sensitivity to O_2 exposure without lowering H_2 production rates or losing electrons to O_2 reduction. Testing the improved hydrogenases with a biologically derived, light-dependent electron source provides evidence that this game changing technology has the potential for sustainable large-scale fuel production.

Keywords: [FeFe] hydrogenase; O₂ tolerance; Hydrogen; Renewable energy; Biofuel

1. Introduction

Producing H_2 from sunlight and water as a sustainable fuel source has been a long standing but difficult objective. Successful photosynthetic H_2 production requires coordinated advances in both bioreactor and organism design as well as protein engineering. Because the product accumulates as a gas, the culture must be fully contained (Fig. 1A). While this requirement may increase initial capital costs, it also confers crucial metabolic advantages. Because air is excluded, the only source of O_2 is from water splitting. The available thermodynamic driving force (photon free energy) will limit achievable H_2 partial pressures (P_{H2} , approximately 0.05 atm), and reaction stoichiometry will limit P_{O2} to half of P_{H2} . This limitation will avoid the significant loss of reducing equivalents to Mehler reactions which occur during normal photosynthesis—especially under intense solar illumination (Makino et al., 2002; Roberty et al., 2014). In addition, limiting both P_{CO2} and P_{O2} will dramatically lower reducing equivalent consumption by RuBisCO (Quintana et al., 2011) thereby directing most of the electron flux toward H_2 production by a prolific enzyme, an [FeFe] hydrogenase. Avoiding the need for carbon fixation, which requires the conversion of very low partial pressure CO_2 into reduced biochemical, dramatically increases the

Download English Version:

https://daneshyari.com/en/article/6494017

Download Persian Version:

https://daneshyari.com/article/6494017

Daneshyari.com