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a b s t r a c t

Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we
established an experimental evolution approach for improving microbial metabolite production by
imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-
activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)
cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-
responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a
significantly higher growth rate, increased L-valine titers (�25%) and a 3-4-fold reduction of by-product
formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*)
in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to
100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator
GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve
growth and productivity of microbial production strains.

& 2015 International Metabolic Engineering Society. Published by Elsevier Inc.

1. Introduction

Mutation and selection are key components of evolution driv-
ing adaption and the development of novel traits. Short generation
times and a natural mutation frequency of 10�10 to 10�9 muta-
tions per base pair per replication cycle enable the selection of
beneficial phenotypical traits from high genetic diversity (Barrick
and Lenski, 2013). During the last few years, laboratory evolution
strategies went more and more into the focus to adapt industrial
producer strains to detrimental growth conditions such as oxida-
tive and thermal stress (Lee et al., 2013; Oide et al., 2015; Sandberg
et al., 2014; Tenaillon et al., 2012), to improve product formation
(Raman et al., 2014; Reyes et al., 2014; Xie et al., 2015) or solvent
tolerance (Atsumi et al., 2010; Lee et al., 2011; Oide et al., 2015)
(for reviews discussing the use of adaptive evolution approaches
in metabolic engineering, see Abatemarco et al., 2013; Portnoy
et al., 2011).

Due to the high complexity of carbon and energy fluxes in
living cells, classical strain engineering based on rational design
approaches is often limited by the current knowledge of bacterial

physiology. Alternatively, high-throughput engineering approa-
ches based on random mutagenesis followed by an efficient
screening strategy are applied to overcome the limits of rational
strain development. In this context, the use of biosensors has
proven to be a highly valuable tool by translating intracellular
product formation into a screenable optical output, such as fluor-
escence (Dietrich et al., 2010; Eggeling et al., 2015; Schallmey et al.,
2014). However, after random mutagenesis strains typically reveal
several hundreds of genomic alterations representing a major
challenge in identifying those mutations linked to the particular
phenotype of interest (Binder et al., 2012; Chou and Keasling,
2013). Here, industrial strain development strongly benefits from
adaptive evolution approaches, in which strains typically feature
only a few mutations and which enable the enrichment of non-
intuitive beneficial mutations by improving growth at the same
time (Abatemarco et al., 2013; Portnoy et al., 2011). Up to now,
laboratory evolution experiments of mainly fitness-linked phe-
notypes have been performed by exposing microorganisms to
sequentially increasing levels of environmental stress (Eckdahl
et al., 2015; Lee et al., 2013; Marietou et al., 2014; Oide et al., 2015;
Reyes et al., 2014). Especially in the case of the yeast Sacchar-
omyces cerevisiae, adaptation to an improved ethanol tolerance has
been proven useful for increasing product formation (Alper et al.,
2006; Jiménez and Benítez, 1987; Liu, 2006).
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The bottom line of almost all reported adaptive evolution
approaches is selection for improved growth and survival, which
usually coincides with increased product formation – especially in
the case of growth-coupled processes (Feist et al., 2010). To expand
the toolbox for metabolic engineering, we here report on a novel
strategy capable of evolving the production of inconspicuous
metabolites, which are not linked to fitness. This approach
involves the implementation of an artificial selective pressure on
the fluorescent output of transcription factor-based biosensors by
fluorescence-activated cell sorting (FACS). In previous studies,
several laboratories have successfully demonstrated the value of
synthetic sensor constructs for small molecule detection as well as
their application in high-throughput screening approaches and
single-cell analysis (Binder et al., 2012; Dietrich et al., 2010, 2013;
Mustafi et al., 2012, 2014; Siedler et al., 2014).

Recently, we developed an amino acid biosensor, based on the
transcriptional regulator Lrp of Corynebacterium glutamicum (Lange
et al., 2012), which enables the intracellular detection of L-methio-
nine as well as branched-chain amino acids, and translates this
information into a measureable fluorescent output (Mustafi et al.,
2012). This biosensor system has already been successfully applied
for online monitoring and live cell imaging studies of C. glutamicum
L-valine production strains at the single-cell level to analyze phe-
notypic production heterogeneity (Mustafi et al., 2014).

C. glutamicum is an important industrial platform organism
used for the large-scale industrial production of amino acids (e.g.
L-glutamate, L-lysine and L-valine) (Eggeling and Bott, 2005;
Wendisch, 2007). L-valine is an essential amino acid for verte-
brates and is required for infusion solutions, cosmetics or as pre-
cursor for herbicides (Eggeling et al., 2001; Leuchtenberger, 1996).
In order to engineer strains for L-valine production, mutants
deficient in the E1p subunit (aceE) of the pyruvate dehydrogenase
complex (PDHC) have been constructed and characterized in sev-
eral studies (Blombach et al., 2008, 2007; Chen et al., 2015; Eik-
manns and Blombach, 2014). Due to the inactivation of the PDHC,
pyruvate accumulates in the cell and is channeled as a precursor
towards L-valine production (Fig. 1). For cell growth, acetate is
supplied to the medium to maintain the acetyl-CoA pool for the
tricarboxylic acid (TCA) cycle.

In this study, we successfully established a biosensor-driven
adaptive evolution approach to improve L-valine production of C.
glutamicum ΔaceE. Isolated evolved clones exhibited significantly
increased product formation and reduced formation of the by-
product L-alanine. This approach demonstrates the power of
biosensor-driven laboratory evolution approaches to select for
beneficial and non-intuitive mutations leading to an improved
production phenotype.

2. Materials and methods

2.1. Bacterial strains, media and growth conditions

The bacterial strains and plasmids used in this study are listed
in Table 1. Strain C. glutamicum ATCC 13032 was used as the wild-
type strain (Kalinowski et al., 2003).Unless otherwise specified, C.
glutamicum ΔaceE cells were picked from a brain heart infusion
(BHI) agar plate containing 85 mM acetate, inoculated in 4 ml BHI
medium with 85 mM acetate and incubated for eight hours at
30 °C and 170 rpm. Subsequently, the cells from the first pre-
culture were used to inoculate a second pre-culture in a shake
flask containing 20 ml CGXII minimal medium (Keilhauer et al.,
1993) with 222 mM glucose and 254 mM acetate. The cells were
incubated overnight at 30 °C and 120 rpm. The following day, the
cells were washed with 0.9% (w/v) saline, adjusted to an optical
density (OD600) of 1 in fresh 50 ml CGXII minimal medium

containing 222 mM glucose and 254 mM acetate, and incubated at
30 °C and 120 rpm. Unless otherwise specified, CGXII minimal
medium was prepared without the addition of urea, which is part
of the original CGXII recipe (Keilhauer et al., 1993). In this study,
acetate was added to the medium as potassium acetate salt. Bio-
mass formation was monitored by measuring OD600, while the cell
dry weight (CDW, g L�1) was calculated by following equation:
CDW¼OD600�0.3 g L�1 (Buchholz et al., 2013). Escherichia coli
DH5α cells were incubated in lysogeny broth (LB) medium by
agitation at 120 rpm in shake flasks or grown on LB agar plates at
37 °C (Sambrook et al., 2001). If appropriate, kanamycin was added
to the media in a final concentration of 25 mg/ml for C. glutamicum
and 50 mg/ml for E. coli.

2.2. Procedure of the biosensor-driven evolution experiment

For the evolution experiment, C. glutamicum ΔaceE containing
the plasmid-encoded Lrp-biosensor was picked from an agar plate
and cultivated overnight in 4 ml BHI medium with 85 mM acetate
and 25 mg/ml kanamycin. The following day, 2 ml of the preculture
was used to inoculate a 200 ml shake flask with 50 ml CGXII
minimal medium, 222 mM glucose, 254 mM acetate and 25 mg/ml
kanamycin. As the strain C. glutamicum ΔaceE displays a growth-
decoupled production phenotype (Blombach et al., 2007), cells
were analyzed and sorted by FACS after 28 h of cultivation. At this
time, the cells typically entered the stationary phase and had
initiated L-valine production some hours previously. One million
cells showing the top 10% sensor output were sorted on Multi-
Screen HTS filter plates (Millipore, Billerica, USA) to separate cells
from the FACSFlow™ buffer (Becton Dickinson, San Jose, USA). We
isolated 106 cells with the top 10% sensor output to ensure a high
genomic variability in the propagated culture. Furthermore, we
found that inoculating the culture with a lower number of cells
resulted in unstable growth. In parallel, the supernatant of the
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Fig. 1. Schematic of the central metabolism of C. glutamicum ΔaceE and the L-
valine biosynthetic pathway. Due to the deletion of the Ep1 subunit (ΔaceE) of the
PDHC, pyruvate is not converted to acetyl-CoA by the activity of the PDHC (red
cross). Abbreviations: acetohydroxy acid isomeroreductase (AHAIR), acetohydroxy
acid synthase (AHAS), acetate kinase (AK), alanine aminotransferase (AlaT), alanine
aminotransferase (AvtA), dihydroxy acid dehydratase (DHAD), pyruvate decarbox-
ylase (PCx), pyruvate dehydrogenase complex (PDHC), pyruvate kinase (PK),
phosphoenolpyruvate (PEP), PEP carboxykinase (PEPCk), PEP carboxylase (PEPCx),
pyruvate:quinone oxidoreductase (PQO), phosphotransacetylase (PTA), transami-
nase B (TA).
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