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a b s t r a c t

Metabolic engineering has expa Q2nded from a focus on designs requiring a small number of genetic
modifications to increasingly complex designs driven by advances in genome-scale engineering tech-
nologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational
genome modifications, strain analysis and characterization, and a synthesis step that fuels additional
hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various
engineering fields that has recently become a defining aspect of synthetic biology. This review will
attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their
use to a range of metabolic engineering applications.

& 2015 International Metabolic Engineering Society. Published by Elsevier Inc.

1. Introduction

Metabolic engineering is concerned with the engineering of
biological systems for the purpose of manipulating flux towards
desired products. A central goal of the field is to develop forward
engineering approaches that are driven by predictive models and
associated theory. Since such approaches require both sufficient
understanding to develop models and genetic engineering tools to
construct and test model predictions, the history of the field has
focused primarily on the modification of a small number of genes
with clear links to a targeted pathway. Typical modifications
include overexpression of rate-limiting steps in the pathway,
introduction of heterologous genes, and/or removal of competing
pathways. Efforts along these lines have proven successful in
increasing production titers from a broad range of platform strains,
with applications ranging from bulk chemicals (Song et al., 2013;
Yang et al., 2014), biofuels (Choi et al., 2012; Jang et al., 2012), to
pharmaceuticals (Martin et al., 2003; Paddon and Keasling, 2014)
and food derivatives (Kaur et al., 2014), among others.

In the last decade, metabolic engineering has shifted from
designs targeting a handful of genes with close metabolic network
relationships to increasingly complex designs requiring the mod-
ification of dozens of genes spanning a broad range of metabolic
functions (transporters, pathway enzymes, tolerance genes, etc.).
To support this increased engineering complexity, metabolic

engineering can now be generally defined by the use of iterative
cycles of rational genome modification, systems level character-
ization, and sophisticated analysis. This approach mirrors the
Design-Build-Test-Learn (DBTL) cycle from the computational and
engineering sciences (Fig. 1). Here, we review applications and
successes of genome scale engineering techniques for metabolic
engineering based on the DBTL concept that link i) pathway design
algorithms with active machine learning, ii) next-generation DNA
synthesis and assembly with genome-engineering, and iii)
laboratory automation with ultra-high throughput and sensitive
genomics methods.

2. Pathway design algorithms with active machine learning

Conventional “design” typically involves a combination of lit-
erature searching, metabolic modeling, and heuristics. This design
approach has limited throughput, where typically only a handful
of designs are considered in depth. Recently, our understanding of
microbial metabolism has greatly increased with accumulating
bio-information on ge Q3ne functions (Kan et al., 2012), genome
structures (Lam et al., 2012), biological pathways (Peralta-Yahya
et al., 2012), metabolic and regulatory networks (Gerosa and Sauer,
2011), and evolution of genomes (Blount et al., 2012). This
knowledge makes it possible for the DBTL design to provide the
complete set of build instructions for any target molecule,
enabling rapid discovery of pathway configurations for reliable
target molecule production.

Computational algorithms such as constraint-based flux bal-
ance analysis (FBA) are essential tools to predict phenotypic
properties in genome scale modeling, which was widely used in
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different model strains. As an example, E. coli's genome-scale
metabolic network models have been updated over 20 years
(McCloskey et al., 2013; Orth et al., 2011). These databases are
critical to improve the accuracy of the prediction of cellular phe-
notypes. More than 100 genome-scale metabolic network models
were constructed for a wide range of different microorganisms,
including Saccharomyces cerevisiae (Förster et al., 2003), Cor-
ynebacterium glutamicum (Shinfuku et al., 2009), Mannheimia
succiniciproducens (Kim et al., 2007), Bacillus subtilis (Henry et al.,
2009), Clostridium acetobutylicum (Lee et al., 2008), Clostridium
beijerinckii (Milne et al., 2011), Lactococcus lactis (Flahaut et al.,
2013), Pichia pastoris (Sohn et al., 2010), Pseudomonas putida
(Puchałka et al., 2008), and so on. Recently, the ensemble model-
ing (EM) approach has shown promise in capturing kinetic and
regulatory effects in the modeling of metabolic networks in
comparison to FBA (Tran et al., 2008). It can simultaneously con-
sider alternative model structures and parameter sets, such as
identifying genetic/enzyme perturbations to minimize the number
of models retained in the ensemble after each round of model
screening (Zomorrodi et al., 2013). Ensemble Modeling for
Robustness Analysis (EMRA), which combines a continuation
method with the Ensemble Modeling approach, can be used for
investigating the robustness of non-native pathways. By compar-
ing possible designs of two nonnative pathways (non-oxidative
glycolysis and reverse glyoxylate cycle), EMRA resulted in the
selection of targets for flux improvement by considering both
performance and robustness (Lee et al., 2014).

A number of algorithms based on the above genome-scale
models have been developed to identify network manipulation
strategies while predicting their system-wide effects (Table 1).
OptKnock (Choon et al., 2014) is onQ4 e popular computational algo-
rithm, capable of suggesting gene deletion strategies that lead to
the overproduction of a target metabolite. A nested optimization
framework identifies gene deletions targets considering both the
production of the desired compounds and biomass formation.
OptKnock was applied to develop strategies for the metabolic

engineering of E. coli for the production of 1,4-butanediol (BDO),
leading to a strain capable of producing 18 g/L BDO from renewable
carbohydrate feedstocks. Beyond gene knockouts, the design of
strains involving overexpression and down-regulation have also
been shown to enhance biochemical production by computational
algorithms. OptForce contrasts the metabolic flux patterns observed
in a parent strain and a strain overproducing the chemical at the
targeted yield (Ranganathan et al., 2010). By applyi Q5ng the OptForce
algorithm, the effect of redirecting malonyl-CoA flux towards
resveratrol production was evaluated, and shake flask experiments
yielded 1.6 g/L of resveratrol without the need of using expensive
inhi Q6bitors of fatty acid metabolism (Bhan et al., 2013).

Every predicted mutation sho Q7uld be associ Q8ated with a specific
design and measured effect on metabolism. However, to fully learn
microbial metabolism and its responses to environmental factors,
it is necessary to functionally characterize and accurately quantify
all levels of gene products, mRNAs, proteins and metabolites, as
well as their interaction. These requirements led to the generation
of omics platform techniques, such as transcriptomics (Sorek and
Cossart, 2010), proteomics (Otto et al., 2012), metabolomics (Hou
et al., 2012) and interactomics (Janga et al., 2011). However, these
techniques also generate a substantial amount of data that is hard
to process and analyze for functional patterns. Several tools for
Omics data analysis have been developed, such as GIMME(Becker
and Palsson, 2008), E-Flux(Colijn et al., 2009), TIGER(Jensen et al.,
2011), GIMMEp(Bordbar et al., 2012) (Table 1). GIMME produces a
guaranteed functional metabolic model specific to transcriptomics
data and quantifies the agreement between gene expression data
and one or more metabolic objectives, which can be used for
adaptive evolution of bacteria and rational design of metabolic
engineering strains. Furthermore, by integrating proteomics and
metabolomics data, GIMMEp and GIM3E methods were developed
based on the GIMME.

Machine-learning methods, instead, seek to use intrinsic data
structure, as well as the expert annotations of biologists to infer
models that can be used to solve versatile data analysis tasks.
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Fig. 1. The DBTL cycle applied to synthetic biology.
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