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a b s t r a c t

Metabolic pathways in cells must be sufficiently robust to tolerate fluctuations in expression levels and
changes in environmental conditions. Perturbations in expression levels may lead to system failure due to
the disappearance of a stable steady state. Increasing evidence has suggested that biological networks have
evolved such that they are intrinsically robust in their network structure. In this article, we presented
Ensemble Modeling for Robustness Analysis (EMRA), which combines a continuation method with the
Ensemble Modeling approach, for investigating the robustness issue of non-native pathways. EMRA
investigates a large ensemble of reference models with different parameters, and determines the effects of
parameter drifting until a bifurcation point, beyond which a stable steady state disappears and system
failure occurs. A pathway is considered to have high bifurcational robustness if the probability of system
failure is low in the ensemble. To demonstrate the utility of EMRA, we investigate the bifurcational
robustness of two synthetic central metabolic pathways that achieve carbon conservation: non-oxidative
glycolysis and reverse glyoxylate cycle. With EMRA, we determined the probability of system failure of
each design and demonstrated that alternative designs of these pathways indeed display varying degrees
of bifurcational robustness. Furthermore, we demonstrated that target selection for flux improvement
should consider the trade-offs between robustness and performance.
& 2014 International Metabolic Engineering Society Published by Elsevier Inc. On behalf of International

Metabolic Engineering Society. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Metabolic engineering has advanced from minor alterations of
existing pathways to significant re-routing of the metabolic path
for better utilization of substrates (Bogorad et al., 2013; Huo et al.,
2011; Zhang et al., 1995) or formation of non-native products
(Atsumi et al., 2008; Choi and Lee, 2013; Dellomonaco et al., 2011;
Ingram et al., 1987; Steen et al., 2010; Zhang et al., 2008, 2010).
With a notable exception (Fung et al., 2005), all metabolic engineering
efforts aim to achieve a steady state or quasi-steady state. Non-steady
states in metabolic engineering typically result in accumulation or
disappearance of intermediate metabolites. Since the engineered
pathways are not tuned through evolution, non-steady states may
occur because the expression levels of the pathway genes may drift
outside the working range as the physiological conditions change.
Drifting of expression levels or other kinetic parameters may lead to
gradual deterioration of performance or sudden system failure
characterized by the disappearance of a stable steady state. While

the deterioration of performance is undesirable, the occurrence of
system failure could be catastrophic for the cell. Thus, a robust
pathway design should first focus on avoiding system failure before
attempting to improve performance.

Through evolution, native metabolic pathways apparently have
solved the robustness problem by selecting a robust network struc-
ture such that the feasible range of each parameter is sufficiently
large (Alon et al., 1999; Barkai and Leibler, 1997; Stelling et al., 2004a,
2004b). In addition, various regulatory mechanisms are in place to
dynamically control the kinetic parameters under various physiolo-
gical conditions. In contrast, non-native or metabolically engineered
native pathways are potentially prone to system failure, when a
kinetic parameter moves away from the initially designed level,
causing accumulation or depletion of metabolites and the disappear-
ance of a stable steady state. Since a stable steady state disappears
after bifurcation occurs, the bifurcational robustness should therefore
be an important criterion for designing non-native pathways. Even
with an artificial dynamic controller (Dahl et al., 2013; Farmer and
Liao, 2000; Zhang et al., 2012) designed for the non-native pathway,
it is desirable to choose network configurations or parameter ranges
that are inherently robust to bifurcation.

The robustness problem calls for a modeling approach that
integrates kinetic parameters with systems performance. Kinetic
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parameters are perturbed in such models to examine the conse-
quences of drifting. Unfortunately, key kinetic parameters (e.g., Vmax's)
are system-dependent and usually unknown. Previous efforts have
addressed the uncertainty of metabolic parameters through the
random sampling of parameters (Steuer et al., 2006; Tran et al.,
2008; Wang et al., 2004) to form an ensemble of models. Various
approaches are then used to extract useful information from the
ensemble upon large parameter changes (Rizk and Liao, 2009; Tan and
Liao, 2012), or infinitesimal perturbations that define control coeffi-
cients (Alves and Savageau, 2000; Schwacke and Voit, 2004; Wang
et al., 2004). Since non-native pathway design normally starts with
little knowledge of kinetic parameters, it is sensible to investigate
bifurcational robustness for an ensemble of models and to quantify it
using the probability of system failure.

Here we combine a continuation method (Allgower and Georg,
2003) with the previously developed Ensemble Modeling (EM)
technique (Tan and Liao, 2012; Tran et al., 2008) to evaluate the
bifurcational robustness of non-native metabolic pathways. This
hybrid approach, termed Ensemble Modeling for Robustness
Analysis (EMRA), allows the investigation of large parameter
changes in an ensemble of models. For each model, the continua-
tion method enables rapid determination of the steady-state
solution as single or multiple parameters are altered up or down
from the baseline. The continuation of steady-state solution
proceeds along either direction until a bifurcation point, beyond
which a stable steady state loses its stability. In metabolic systems,
the disappearance of a stable steady state may or may not be
accompanied by the emergence of sustained oscillations (Chandra
et al., 2011; Danø et al., 1999). Instead, accumulation and depletion
of intermediate metabolites are far more common, which lead to
system failure. Even if metabolic oscillations are functional or
beneficial in certain conditions, an oscillatory metabolic system is
by no means ideal for maintaining a consistent supply of pathway
products. Thus, non-native pathway design should consider bifur-
cational robustness, which can be quantified by the probability of
system failure in an ensemble of models.

In this article, we demonstrate the utility of EMRA by comparing
possible designs of two non-native pathways: non-oxidative glycolysis
(NOG) (Bogorad et al., 2013) and reverse glyoxylate cycle (rGC)
(Mainguet et al., 2013). In each design, we determined probabilities
of system failure and identified targets that might improve perfor-
mance. With both results, EMRA allows the selection of targets for flux
improvement by considering both performance and robustness.

2. Materials and methods

2.1. Dynamic, kinetics-based model

A generic expression of kinetic parameter-based models for
metabolic pathways is

dx
dt

¼ Fðx;pÞ ¼ SUvðx;pÞ ð1Þ

Here, the time derivative of metabolite concentrations in vector
form (x) is represented as the product of S, the stoichiometric
matrix, and v, the vector of reaction fluxes. Since each reaction flux
is also a function of kinetic parameters (p), such models are useful
for studying the effect of parameter drifting on system perfor-
mance. One way to accomplish this is to alter the parameter of
interest and then solve the ordinary differential equation (ODE)-
based model to a new steady state (Fig. 1a). This time-domain
approach, although straightforward, is computationally expensive
if one needs to analyze varying degrees of perturbation for a large
number of models. Most importantly, the time-domain approach
is inadequate for detecting the loss of a stable steady state.

2.2. Continuation method

Here we adopt a computationally efficient and scalable con-
tinuation method (Allgower and Georg, 2003) to investigate the
effect of parameter drifting. This method aims to find a connected
path of steady-state solutions (xSS) to the following equation:

dx
dt

¼ FðxSS;pÞ ¼ 0: ð2Þ

Since F(xSS,p) is equal to zero, it follows that the total derivative of
F(xSS,p) with respect to p is also zero

dFðxSS;pÞ
dp

¼ ∂F
∂xSS

dxSS

dp
þ ∂F
∂p

¼ 0: ð3Þ

Further rearrangement of Eq. (3) yields Eq. (4)

dxSS

dp
¼ � ∂F

∂xSS

� ��1∂F
∂p

; ð4Þ

which specifies the derivatives of steady-state concentrations with
respect to kinetic parameters. Starting from a stable steady state, we
can solve Eq. (4) along the direction where a kinetic parameter
(usually the activity of a particular enzyme) is drifted up or down
from the baseline (Fig. 1b). The corresponding solution, which traces
a trajectory in the xSS–p space, will then characterize how the steady
state responds to the drifting of single or multiple parameters. It
should be noted that solving Eq. (4) is technically equivalent to
solving the steady-state first-order sensitivity equations. Therefore,
the sensitivity profile of metabolite concentrations with respect to
parameters is being updated regularly as the algorithm (i.e., the
differential equation solver) proceeds along the parametric domain.

Given that the calculation of the inverse of the Jacobian matrix
(∂F/∂xSS) is required for solving Eq. (4), it is crucial to detect the point
where the Jacobian matrix becomes singular. Interestingly, this point
is also the bifurcation point: beyond this point the system no longer
reaches a stable steady state. Thus, this point defines the parameter
space where a system is functional with a stable steady state. In
practice, the Jacobian almost always becomes badly conditioned
when the system is approaching a bifurcation point. We consider
such an edge case a bifurcation point. Additionally, due to the nature
of numerical integration, it is possible to “jump” over the region of
singularity. To account for this, we routinely check if any of the
eigenvalues of the Jacobian matrix has crossed the zero line to detect
if the system has passed through a bifurcation point.

2.3. System failure

Since a stable steady state is required for proper functioning of
the metabolic system for metabolite production, but nonetheless
disappears beyond the bifurcation point, any parameter drifting that
crosses the bifurcation point can be considered as entering the region
of system failure (Fig. 1b). The current algorithm does not specifically
flag the oscillatory behaviors if they are damped in nature, but such
features can be added if necessary. Sustained oscillation or oscillation
with ever-increasing amplitude could only occur beyond the bifurca-
tion point (i.e., after the real part of an eigenvalue becomes zero or
positive) and therefore have already been excluded by the algorithm.
Such systems may be of interest for special purposes, but are
generally not the goal of metabolic engineering for metabolite
production. Overall, the continuation method allows both the inves-
tigation of parametric sensitivity and the detection of system failure
due to disappearance of a stable steady state.

2.4. Ensemble Modeling

The construction of dynamic metabolic models in the form of
Eq. (1) is based on both network stoichiometry, which is usually
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