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ARTICLE INFO ABSTRACT

Keywords: Vapor-phase hydrodeoxygenation (HDO) of guaiacol was investigated over a commercial Pd/C (A) catalyst
Anisole (Evonik) and Pd/C (B), Re/C and PdRe/C catalysts prepared by incipient wetness impregnation of Norit SX-1 G
EXAFS activated carbon. The Pd/C catalysts had equivalent dispersions after reduction at 300 °C; however, Pd/C (B) had
XANES very low dispersion after reduction at 400 °C. CO chemisorption, Re Ly; edge extended x-ray absorption fine
:;iDF STEM structure (EXAFS) spectroscopy, and high-angle annular dark field (HAADF)-scanning transmission electron
EDX microscopy (STEM) of the Re/C catalyst after reduction at 400 °C evidenced the formation of supported Re

clusters. EXAFS spectroscopy of the PdRe/C catalyst after in situ reduction at 300 °C indicated the presence of Pd
nanoparticles and Re clusters; a 2.70 A Pd-Re contribution was required to adequately fit the Re Ly; EXAFS
spectrum. HAADF-STEM with energy-dispersive x-ray (EDX) analysis of the PdRe/C catalyst after reduction at
400 °C revealed Re clusters and Pd nanoparticles, some in intimate contact. In guaiacol HDO at 300 °C and 1 atm,
Pd/C (A) was selective to phenol and cyclohexan-one/-ol and did not produce significant yields of benzene and
cyclohexane, despite its high activity. Turnover frequencies for phenol (and cyclohexan-one/-ol) formation over
the Pd/C catalysts were equivalent. Phenol, benzene and anisole were major products over Re/C after in situ
reduction at 400 °C. The highest yield (52%) of fully deoxygenated products was obtained over PdRe/C after in
situ reduction at 400 °C. We infer that the bimetallic catalyst combines synergistically the demethoxylation and
hydrogenation functions of Pd/C with the capability of Re/C to deoxygenate phenol [Ghampson, et al., Catal. Sci.

Technol. 2016].

1. Introduction

Modern transportation relies heavily on liquid fuels derived from
petroleum. Concerns over the limited supply of petroleum and global
climate change have motivated research on biorenewable transporta-
tion fuels [1]. Woody biomass is a viable source of renewable liquid
fuels for the near- to mid-term and is, in principle, carbon-neutral [2,3].
Fast pyrolysis oils (bio-oils) derived from lignocellulose are not suitable
for direct use as transportation fuels because of their low energy den-
sities, pH values, and shelf lives associated with oxygenated organic
constituents (e.g, acids, ketones and aldehydes) [1,2,4,5]. Hydro-
deoxygenation (HDO) of bio-oils has been demonstrated using petro-
leum hydrotreating catalysts (e.g., sulfided CoMo and NiMo/Al,03);
however, these catalysts deactivate via sulfur leaching, coking, and acid
attack on the Al,03 support [6-9]. Carbon-supported noble metal cat-
alysts are promising alternatives that provide higher yields of liquid
fuels with lower residual oxygen contents when compared to noble
metals on metal oxide supports [10,11].

Guaiacol is a model compound for the phenolic fast pyrolysis
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products that comprise a significant fraction of bio-oils [12,13].
Guaiacol HDO has been investigated extensively over conventional
hydroprocessing catalysts [6,7] and supported noble metals, including
Pt, Pd, and Ru/C [12,14-16], Pt/Al,053 [17,18] and Pt/MgO [19].
Noble metals on non-acidic supports typically show a strong propensity
for aromatic ring hydrogenation and demethoxylation of guaiacol to
phenol; however, these monofunctional catalysts lack the capacity to
fully deoxygenate guaiacol to benzene and cyclohexane [16]. For ex-
ample, Gao, et al. screened carbon-supported Ru, Rh, Pd, and Pt
monometallic catalysts for vapor-phase HDO of guaiacol at 300 °C and
1 atm [14]. Of these catalysts, Pt/C had the highest activity and slowest
deactivation rate; the main product was phenol. Similarly, the main
products of guaiacol HDO over Pd/C were phenol and cyclohexan-one/-
ol [14]. Bifunctional catalysts typically are more effective at complete
HDO of guaiacol to benzene and cyclohexane [20]. Metal-zeolite cat-
alysts, such as Ni/H-ZSM-5 [21] and Pt/HY [22,23], have been de-
monstrated to achieve phenol and guaiacol HDO via synergistic metal
(hydrogenation) and acid-catalyzed (dehydration) pathways. Alter-
natively, a more oxophilic metal may be added to supported noble
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metals to enhance direct deoxygenation (DDO) activity [20]. For ex-
ample, PdFe/C catalysts have been shown to provide high yields of fully
deoxygenated products (benzene and cyclohexane) when operated at
350-400 °C [16].

Recently, supported rhenium catalysts (Re/C and Re/SiO,) were
shown to be active for HDO of guaiacol and related phenolics in the
liquid phase at 300 °C and 5MPa [24,25]. Catalytic activity for C—O
bond scission resulting in high yields fully deoxygenated products was
ascribed to partially reduced rhenium oxide species (ReOy). Addition of
Cu to Re/SiO, was found to facilitate Re reduction and boost guaiacol
conversion and selectivity to benzene and cyclohexane [26]. Con-
versely, rhenium has been demonstrated to enhance selectivity and
catalytic activity for selective hydrogenation [27-33] and C—O bond
hydrogenolysis [34-38] when paired with a platinum-group metal
(PGM). Tomishige and coworkers have studied several supported PGM-
Re catalysts for selective hydrogenation of mono- and dicarboxylic
acids [27-29] and hydrogenolysis of ethers and polyols [38]. Their
results suggest that the catalytically active sites comprise low-valent
ReOy clusters in intimate contact with PGM nanoparticles; however, a
role for zero-valent Re clusters cannot be excluded [39]. Koso, et al.
described supported Re nanoparticles covered by ReOy species and low-
valent ReOy clusters attached to Rh metal particles in Re/SiO, and
RhRe/SiO, catalysts, respectively, after reduction at ~330°C [40].
Hakim, et al. concluded that the active sites for selective hydrogenolysis
of 2-(hydroxymethyl)tetrahydropyran (HMTHP) to 1,6-hexanediol
comprise small noble metal particles (Rh, Pt) adjacent to highly re-
duced moieties of a more oxophilic metal (Mo, Re) on a Vulcan carbon
support [37]. Focusing on RhRe/C catalysts, Chia, et al. reported that
Rh-rich nanoparticles with a partial shell of metallic Re are active for
selective hydrogenolysis of HMTHP to 1,6-hexanediol and that Re pe-
netration into the core after reduction at 450 °C correlated with a de-
crease in activity for HMTHP hydrogenolysis [36]. Alloy formation is
less favorable for PdRe than RhRe because of the larger miscibility gap
in the bulk phase diagram [41]. Takeda, et al. proposed that Re"*
species on the surfaces of metallic Re clusters and Pd nanoparticles
were the active sites in RePd/SiO, (Re/Pd = 8) catalysts for hydro-
genation of stearic [29] and succinic acids [28]; the percentage of Re’
clusters and their interaction with the Pd-rich nanoparticles depended
on the precise reduction conditions. Shao, et al., however, demon-
strated using high-resolution TEM that a PdRe/C (Re/Pd = 0.6) catalyst
for succinic acid hydrogenation contained Pd and Pd-Re alloy nano-
particles [31].

In this work, a commercial Pd/C (A) catalyst (Evonik) and Pd/C (B),
Re/C and PdRe/C catalysts prepared by incipient wetness impregnation
of Norit SX-1 G activated carbon were investigated for vapor-phase
HDO of guaiacol at 300 °C and 1 atm. The catalysts were characterized
by temperature-programmed reduction (TPR), CO chemisorption, x-ray
absorption spectroscopy (XAS), and scanning transmission electron
microscopy (STEM) with energy-dispersive x-ray (EDX) analysis.
Guaiacol HDO product distributions were evaluated for each catalyst in
a continuous flow reactor at integral conversion, and turnover fre-
quencies (TOFs) for primary products were determined at differential
conversion.

2. Experimental
2.1. Catalysts

A commercial 5% Pd/C catalyst (Evonik E117), denoted Pd/C (A),
was received as a reduced 50% water-wet powder and dried at 110 °C in
air prior to use. Carbon-supported Pd, Re, and PdRe catalysts were
prepared by incipient wetness impregnation of Norit SX-1 G activated
carbon. The catalyst precursors: PA(NO3)>'H,0 (99.9% Pd basis, Strem)
and a 76.5 wt% solution of HReO4 (99.99% Re, Acros Organics) were
dissolved in 18 MQ-cm deionized water. After impregnation, the paste
was dried at 110 °C in air, the solid was crushed with mortar and pestle,
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Table 1
Catalyst metal loadings and CO chemisorption results.
Catalyst ~ Metal loadings Reduction Strongly co/ Metal
(wt.%) temperature® bound CO metal® dispersion®
Q9] (umol/ (%)
8ead)
Pd Re

Catalysts after in situ reduction

Pd/C (A) 4.80 - 300 39.3 0.087 17

Pd/C (B) 4.11 - 300 39.3 0.10 20
400 6.7 0.017 3.5

Re/C - 7.64 400 222 0.54 54

PdRe/C 3.96 7.50 300 217 0.28 -
400 224 0.29 -

Catalysts previously reduced ex situ at 400 °C and passivated in air

Pd/C (B) 4.11 - 300 24.6 0.064 13
400 4.0 0.010 2.1

Re/C - 7.64 300 123 0.30 30
400 178 0.43 43

PdRe/C 3.96 7.50 300 134 0.17 -
400 147 0.19 -

@ In situ reduction at indicated temperature for 1h followed by evacuation
for 4h.

> Measured by difference isotherm method at 35 °C.

¢ Mols strongly bound CO/mol metal (total).

4 Stoichiometry factors: 0.5 CO/Pd and 1 CO/Re.

and the resultant powder was stored in a desiccator until use. Metal
loadings (Table 1) were determined by inductively coupled plasma-
optical emission spectrometry at Eastman Chemical Company, King-
sport, TN.

2.2. TPR

Measurements were performed using a Micromeritics 2920
AutoChem II. Catalyst powder (~100 mg) was loaded into a quartz U-
tube and purged with He (UHP, National Welders) at ~40°C.
Subsequently, the sample was heated at 10 °C/min in flowing 5% H,/Ar
(Certified mixture, Machine and Welding) to a final temperature of 400,
500 or 800 °C. H, uptake during TPR was monitored using a AgO-ca-
librated thermal conductivity detector (TCD).

2.3. CO and H, chemisorption

Volumetric CO chemisorption measurements were made using a
Micromeritics 2020c ASAP instrument. Catalyst samples were evac-
uated for 1 h at 100 °C, reduced in flowing H, (Research grade, National
Welders) at either 300 °C or 400 °C for 1h, and evacuated at the re-
duction temperature for 4 h. After a negative leak test, an adsorption
isotherm using CO (Research grade, National Welders) was measured at
35°C. Subsequently, the sample was evacuated to remove weakly
bound CO, and then the analysis repeated. A difference isotherm cor-
responding to strongly bound CO was used in dispersion calculations.
Metal dispersions were calculated using surface atom stoichiometry
factors of 0.5 CO/Pd [42] and 1 CO/Re [43]. Volumetric H, chemi-
sorption measurements were performed at 35, 70 and 100 °C on se-
lected samples using an analogous procedure.

2.4. X-ray absorption spectroscopy (XAS)

Pd K (24,350 V) and Re Ly; (10,535 eV) x-ray absorption spectra
were measured in transmission mode at the National Synchrotron Light
Source, Brookhaven National Laboratory using beam lines X-10C and X-
11 A. The Si(311) x-ray monochromators were calibrated using Pd foil
and Re powder standards. XAS measurements were made on lab-pre-
pared catalysts that had been reduced ex situ at 400 °C, cooled to 25 °C,
and exposed slowly to air. Powdered samples were pressed into
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