Accepted Manuscript

Title: Fischer-Tropsch synthesis: foregoing calcination and utilizing reduction promoters leads to improved conversion and selectivity with Co/silica

Authors: Michela Martinelli, Mohammad Mehrbod, Chase Dawson, Burtron H. Davis, Luca Lietti, Donald C. Cronauer, A. Jeremy Kropf, Christopher L. Marshall, Gary Jacobs

PII: S0926-860X(18)30185-6

DOI: https://doi.org/10.1016/j.apcata.2018.04.013

Reference: APCATA 16619

To appear in: Applied Catalysis A: General

Received date: 20-12-2017 Revised date: 26-3-2018 Accepted date: 13-4-2018

Please cite this article as: Martinelli M, Mehrbod M, Dawson C, Davis BH, Lietti L, Cronauer DC, Kropf AJ, Marshall CL, Jacobs G, Fischer-Tropsch synthesis: foregoing calcination and utilizing reduction promoters leads to improved conversion and selectivity with Co/silica, *Applied Catalysis A, General* (2010), https://doi.org/10.1016/j.apcata.2018.04.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fischer-Tropsch synthesis: foregoing calcination and utilizing reduction promoters leads to improved conversion and selectivity with Co/silica

Michela Martinelli^a, Mohammad Mehrbod^b, Chase Dawson^{ac}, Burtron H. Davis^a, Luca Lietti^d, Donald C. Cronauer^e, A. Jeremy Kropf^e, Christopher L. Marshall^e, and Gary Jacobs^{bf*}

^a Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, USA

^b Dept. of Mechanical Engineering, One UTSA Circle, San Antonio, TX 78249, USA

^c Henry Clay High School, 2100 Fontaine Road, Lexington, KY 40502, USA

^d Politecnico di Milano, Dipartimento di Energia, Via la Masa 34, 20156 Milan, Italy

^eArgonne National Laboratory, Argonne, IL 60439, USA

^f Chemical Engineering Program - Dept. of Biomedical Engineering, One UTSA Circle, San Antonio, TX 78249, USA

* corresponding author

Highlights

- Air calcined Co/SiO₂ produce large, easily reduced, Co particles and low Co site densities.
- Direct reduction of cobalt nitrate particles on silica yield small, difficult to reduce, Co particles.
- TPR-MS/EXAFS/XANES reveal a Co oxide spinel is formed by NO₂ oxidation, reducing to CoO and Co⁰.
- Pt addition facilitates reduction of small Co oxides formed during direct nitrate reduction.
- Direct Co nitrate reduction: adding Pt greatly increases Co site density and X_{co}; improves selectivity.

Download English Version:

https://daneshyari.com/en/article/6496725

Download Persian Version:

https://daneshyari.com/article/6496725

<u>Daneshyari.com</u>