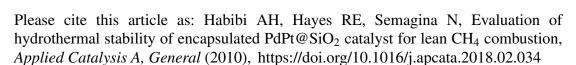
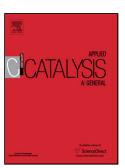
Accepted Manuscript

Title: Evaluation of hydrothermal stability of encapsulated PdPt@SiO₂ catalyst for lean CH₄ combustion

Authors: Amir H. Habibi, Robert E. Hayes, Natalia Semagina


PII: S0926-860X(18)30101-7

DOI: https://doi.org/10.1016/j.apcata.2018.02.034

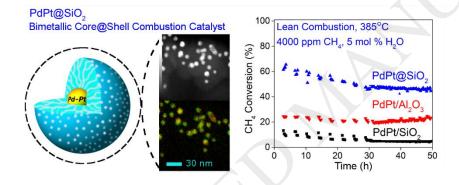

Reference: APCATA 16574

To appear in: Applied Catalysis A: General

Received date: 27-12-2017 Revised date: 18-2-2018 Accepted date: 28-2-2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT


Evaluation of hydrothermal stability of encapsulated PdPt@SiO₂ catalyst for lean CH₄ combustion

Amir H. Habibi, Robert E. Hayes and Natalia Semagina*

Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St.,

Edmonton T6G 1H9 Canada; *semagina@ualberta.ca.

Graphical abstract

Research Highlights:

- PdPt nanoparticles are encapsulated in silica for wet methane combustion catalysis
- The encapsulated catalyst shows higher conversion than impregnated Al₂O₃ and SiO₂
- The shell remains intact but PdPt morphology and dispersion change after ageing

Download English Version:

https://daneshyari.com/en/article/6496856

Download Persian Version:

https://daneshyari.com/article/6496856

<u>Daneshyari.com</u>