Contents lists available at ScienceDirect



## Applied Catalysis B: Environmental



journal homepage: www.elsevier.com/locate/apcatb

### Enhanced photocatalytic $NO_x$ decomposition of visible-light responsive F-TiO<sub>2</sub>/(N,C)-TiO<sub>2</sub> by charge transfer between F-TiO<sub>2</sub> and (N,C)-TiO<sub>2</sub> through their doping levels



Shio Komatsuda<sup>a</sup>, Yusuke Asakura<sup>a</sup>, Junie Jhon M. Vequizo<sup>b</sup>, Akira Yamakata<sup>b</sup>, Shu Yin<sup>a,\*</sup>

<sup>a</sup> Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
<sup>b</sup> Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya, 468-8511, Japan

#### ARTICLE INFO

Keywords: Composites Photocatalytic deNOx Charge transfer Doping level Transient absorption

#### ABSTRACT

Composite type photocatalyst F-TiO<sub>2</sub>/(N,C)-TiO<sub>2</sub> consisted of anatase-type TiO<sub>2</sub> with fluorine-doping (F-TiO<sub>2</sub>) and TiO<sub>2</sub> with nitrogen and carbon-doping ((N,C)-TiO<sub>2</sub>) was prepared by simple physical mixing to exhibit higher visible-light responsive photocatalytic nitrogen oxide (NO<sub>x</sub>) decomposition activity than those of F-TiO<sub>2</sub> and (N,C)-TiO<sub>2</sub>. Transient absorption measurement clarified that the composite possessed longer carrier lifetime compared to that of each material (F-TiO<sub>2</sub> or (N,C)-TiO<sub>2</sub>), resulting in higher photocatalytic activity. In the composite, photoexcited holes and electrons, which are not in impurity level but in valence and conduction band, respectively, should photocatalytically decompose NO<sub>x</sub>, judging from the redox potential of  $O_2/O_2^{--}$  and the band positions of F-TiO<sub>2</sub> and (N,C)-TiO<sub>2</sub>. The mechanism for higher visible-light photocatalytic activity, or longer carrier lifetime can be explained by charge transfer between F-TiO<sub>2</sub> and (N,C)-TiO<sub>2</sub> through their impurity levels. The charge transfer should make photoexcited carries spatially separated to enhance the photocatalytic activity.

#### 1. Introduction

Utilization of photocatalysts is one of the way for solution of recent energy and environment problems, because they can induce redox reactions under solar light which almost permanently reaches to the earth [1]. The redox reactions by photocatalysts can lead to many applications including self-cleaning, decomposition of substance and watersplitting [2,3]. Titanium dioxide (TiO<sub>2</sub>) is one of the metal oxide semiconductors with high photocatalytic activity [4,5]. Because TiO<sub>2</sub> is chemical and physical stable, low-cost and easy to be synthesized, it was widely studied and practically applied. Among various crystal structure of TiO<sub>2</sub>, anatase type TiO<sub>2</sub> has been known as an excellent photocatalyst. However, band gap of anatase-type TiO<sub>2</sub> is too wide ( $\sim$ 3.2 eV), and anatase-type TiO<sub>2</sub> possesses no visible-light photoresponsivity [6]. Therefore, many efforts have been paid for creation of visible-light responsivity in TiO<sub>2</sub>.

Some elements have been doped to  $\text{TiO}_2$  to realize visible-light photoresponsivity [7–11]. Recently, much attention has been given to anion doping including nitrogen-, fluorine-, and carbon-doping to  $\text{TiO}_2$ to form mixed-anion materials, because it can easily prepare visiblelight responsive photocatalytsts [12]. Nitrogen doping into  $\text{TiO}_2$  makes impurity level at shallower potential than the valence band (VB) maximum of  $TiO_2$  [13–18]. In the case of fluorine doping,  $Ti^{3+}$  is formed by reduction of  $Ti^{4+}$  as a counterpart of  $F^-$  and the  $Ti^{3+}$  impurity level locates at deeper potential than the conduction band (CB) minimum of  $TiO_2$  [18–20]. Carbon can be doped to both anionic and cationic sites of  $TiO_2$  to form various types of impurity level between its band gap [15,18,21,22]. Such doping decrease excitation energy to induce visible-light responsivity. Because each dopant can lead to formation of different impurity level, we can design visible-light responsive  $TiO_2$  with various band structures by selection or combination of various dopants. However, impurity level can sometimes work as a recombination centre, and its prevention is surely needed.

Formation of composite can suppress electron-hole recombination, because charge transfer can occur between two types of semiconductors with different band structures [23–25]. The excited electrons and holes transfer at the interface of composite can be categorized into two types; double-charge transfer mechanism and Z scheme mechanism. In the case of double-charge transfer mechanism (Scheme 1a), photoexcited electrons in CB of semiconductor B transfer to CB of semiconductor A, and photoexcited holes in VB of semiconductor A transfer to VB of semiconductor B. Because electrons and holes accumulate in CB of

\* Corresponding author.

E-mail address: shuyin@tagen.tohoku.ac.jp (S. Yin).

https://doi.org/10.1016/j.apcatb.2018.07.038

Received 19 May 2018; Received in revised form 9 July 2018; Accepted 11 July 2018 Available online 11 July 2018

0926-3373/ © 2018 Elsevier B.V. All rights reserved.



**Scheme 1.** Schematic diagram of electron–hole separation at the interface of composite; (a) double-charge transfer mechanism and (b) Z scheme mechanism.

semiconductor A and VB of semiconductor B, respectively, recombination between excited electrons and holes can be suppressed.

In the case of Z scheme mechanism (Scheme 1b), photoexcited electrons in CB of semiconductor A transfer to VB of semiconductor B, and combine with photoexcited holes in VB of semiconductor B. Consequently, electrons and holes are separated and accumulate in CB of semiconductor B and VB of semiconductor A, respectively. Recently, some semiconductors with doping have been applied as a component of such composites, and the composites have possessed distinguished photocatalytic activity [26–29]. However, effect of their impurity level induced by doping on catalytic activity of composites has not been understood exactly. Such understanding can enable to precisely design photocatalytic composite materials and these photoreaction processes.

In this study, we demonstrate the effect of impurity level of semiconductor on photocatalytic activity of composite. Anatase-type TiO<sub>2</sub> photocatalysts with anion doping were used as a component of photocatalyst composites. Because anatase-type TiO<sub>2</sub> with different dopants possess different impurity level with the same conduction and valence bands, we can easily focus only the effect of the impurity level. Three types of anatase-type TiO<sub>2</sub> doped with various anions, such as fluorinedoped TiO<sub>2</sub> (F-TiO<sub>2</sub>), carbon-doped TiO<sub>2</sub> (C-TiO<sub>2</sub>) and nitrogen and carbon-doped TiO<sub>2</sub> ((N,C)-TiO<sub>2</sub>), were used as the component of photocatalyst composites; In addition, anatase-type TiO<sub>2</sub> without doping was also synthesized for comparison. By simply mixing any two of those materials, such as TiO<sub>2</sub> and (N,C)-TiO<sub>2</sub> (TiO<sub>2</sub>/(N,C)-TiO<sub>2</sub>), F-TiO<sub>2</sub> and (N,C)-TiO<sub>2</sub> (F-TiO<sub>2</sub>/(N,C)-TiO<sub>2</sub>), F-TiO<sub>2</sub> and C-TiO<sub>2</sub> (F-TiO<sub>2</sub>/C-TiO<sub>2</sub>), C-TiO<sub>2</sub> and (N,C)-TiO<sub>2</sub> (C-TiO<sub>2</sub>/(N,C)-TiO<sub>2</sub>), various kind of composites were prepared, and their photocatalytic  $NO_x$  decomposition activities were evaluated under visible- and UV light irradiation (Scheme 2). Because the photocatalytic activity of F-TiO<sub>2</sub>/(N,C)-TiO<sub>2</sub> was higher than that of  $\text{F-TiO}_2$  and (N,C)-TiO\_2, the carrier dynamics of the composite was analysed for understanding the role of their impurity levels. In addition, the effect of mixing ratio of F-TiO<sub>2</sub>/(N,C)-TiO<sub>2</sub> on the photocatalytic activity was also investigated. From those results, we discussed about the photo-reaction process and the mechanism for the effect of impurity level on photocatalytic activity of the composite.



Scheme 2. Schematic synthesis flow of F-TiO<sub>2</sub>/(N,C)-TiO<sub>2</sub>.

#### 2. Experimental

## 2.1. Synthesis of $TiO_2$ with and without doping and preparation of their composites

TiO<sub>2</sub> was synthesized by a solvothermal process. First, titanium tetraisopropoxide (Kanto Chemical Co., Inc., 1.2 mL) was added to a mixed solvent including ethanol (Kanto Chemical Co., Inc., 8 mL) and acetic acid (Kanto Chemical Co., Inc., 2 mL), and then stirred for 30 min. After that, the mixture was transferred to a Teflon container with internal volume of 100 mL, and the container was put in stainless steel autoclave. The autoclave was heated at 240 °C for 24 h with rotation at 100 rpm. After the treatment, the mixture was filtrated, and white powders were obtained. The white powders were washed with distilled water and ethanol, and dried at 60 °C overnight. The obtained sample was denoted as TiO<sub>2</sub>. F-TiO<sub>2</sub> was prepared by treatment of the obtained TiO<sub>2</sub> with ammonium fluoride (NH<sub>4</sub>F) aqueous solution [30]. The obtained TiO<sub>2</sub> (7.2 g) was added to 0.11 M NH<sub>4</sub>F aqueous solution (Kanto Chemical Co., Inc., 8 mL) and the dispersion was stirred for 24 h at room temperature. After the stirring, the dispersion was filtrated to obtain a white precursor. After washing and drying, the white powders were put into alumina crucible and calcined at 300 °C for 2 h in air to obtain a beige colour of sample, which was denoted as F-TiO<sub>2</sub>. (N,C)-TiO<sub>2</sub> was synthesized on the basis of our previous report [31]. A solution of 20 wt % Titanium (III) chloride (Kanto Chemical Co., Inc., 21.5 mL) and hexamethylenetetramine (Kanto Chemical Co., Inc., 10 g) were mixed with methanol (Wako Co., 25 mL). The mixture was transferred to a Teflon container in stainless steel autoclave, and heated at 190 °C for 2 h. After filtration, the sample was washed and dried overnight. The obtained beige powder was denoted as (N,C)-TiO<sub>2</sub>. C-TiO<sub>2</sub> was also synthesized on the basis of our other previous report [32]. Firstly, titanium(IV) tetrabutoxide (Kanto Chemical Co., Inc., 2.5 mL) was mixed with ethanol (8 mL) and then the mixture was stirred for 30 min. Then, a mixed solvent including from ethanol (10 mL) and distilled water (15 mL) was added to the mixture, and stirred for 30 min. To carry out the solvothermal reaction, the mixture was introduced into a Teflon-sealed autoclave. After heating at 190 °C for 2 h, white powders as precursor for C-TiO<sub>2</sub> were obtained after filtration. The white powders were heated at 265 °C for 2 h in air to produce C-TiO<sub>2</sub>. For the preparation of various composites, any two kinds of TiO<sub>2</sub>-based single materials were physically mixed by using agate mortar. Four kinds of composites including F-TiO<sub>2</sub>/(N,C)-TiO<sub>2</sub>, F-TiO<sub>2</sub>/TiO<sub>2</sub>, (N,C)-TiO<sub>2</sub>/C-TiO<sub>2</sub> and F-TiO<sub>2</sub>/C-TiO<sub>2</sub> were obtained. Basically, the mixing ratio of the two materials in the composites was 1:1.

#### 2.2. Characterization

The crystalline phases and crystallite size of samples were identified by powder X-ray diffraction analysis (XRD, Bruker AS, Inc., D2PHASER) using Cu K $\alpha$  radiation. The size and shape of the obtained samples were observed by transmission electron microscopy (TEM, JEOL Inc., JEM-2000EXII). The specific surface areas were calculated from N<sub>2</sub> absorption measurements by the BET equation (Quantachrome Instruments Japan LLC, NOVA 4200e). The UV–vis diffuse reflectance spectra (DRS) were measured by using a UV–vis spectrophotometer (JASCO Co., V-670). The composition and chemical bonding state of samples were detected by X-ray photoelectron spectroscopy (XPS, ULVAC-PHI, Inc., PHI5600).

#### 2.3. Measurement of transient absorption spectra

Microsecond time-resolved visible to mid-IR absorption measurements were performed by using the custom-built spectrometers, as reported in our previous paper [33]. Briefly, in the mid-IR region  $(6000 - 1000 \text{ cm}^{-1})$ , the probe light emitted from an IR source was focused on the sample, and the transmitted light was monochromated

Download English Version:

# https://daneshyari.com/en/article/6498058

Download Persian Version:

https://daneshyari.com/article/6498058

Daneshyari.com