Accepted Manuscript

Title: Co-Catalyst-Free Photocatalytic Hydrogen Evolution on

TiO₂: Synthesis of Optimized Photocatalyst through

Statistical Material Science

Authors: Yamen AlSalka, Amer Hakki, Jenny Schneider,

Detlef W. Bahnemann

PII: S0926-3373(18)30653-2

DOI: https://doi.org/10.1016/j.apcatb.2018.07.045

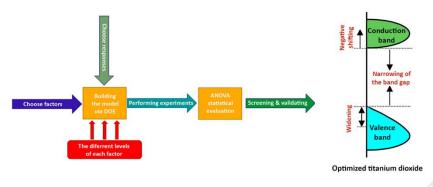
Reference: APCATB 16867

To appear in: Applied Catalysis B: Environmental

Received date: 26-4-2018 Revised date: 26-6-2018 Accepted date: 14-7-2018

Please cite this article as: AlSalka Y, Hakki A, Schneider J, Bahnemann DW, Co-Catalyst-Free Photocatalytic Hydrogen Evolution on TiO₂: Synthesis of Optimized Photocatalyst through Statistical Material Science, *Applied Catalysis B: Environmental* (2018), https://doi.org/10.1016/j.apcatb.2018.07.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


ACCEPTED MANUSCRIPT

Co-Catalyst-Free Photocatalytic Hydrogen Evolution on TiO₂: Synthesis of Optimized Photocatalyst through Statistical Material Science

Yamen AlSalka a,b, Amer Hakki c, Jenny Schneider a,b, and Detlef W. Bahnemann a,b,d

- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr. 3, D-30167 Hannover, Germany.
- ^b Laboratorium fur Nano- und Quantenengineering, Leibniz Universität Hannover, Schneiderberg 39, 30167 Hannover, Germany.
- ^c Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE Aberdeen, Scotland, United Kingdom.
- ^d Laboratory "Photoactive Nanocomposite Materials", Saint-Petersburg State University, Ulyanovskaya str. 1, Peterhof, Saint-Petersburg, 198504 RUSSIA.

Graphical abstract

Highlights

- A successful combination between statistical and material sciences was achieved.
- DOE offers a systematic statistical approach to synthesize TiO₂ via EISA method.
- A Photocatalytic hydrogen evolution on a co-catalyst-free TiO₂ was recorded.
- The anatse TiO₂ has a narrower band gap with a more negative potential of its Efb.
- The optimized TiO₂ has high density of charge carriers exhibiting longer lifetime.

Abstract

An active TiO₂ for co-catalyst-free photocatalytic hydrogen evolution was successfully synthesized employing a simple Evaporation-Induced Self-Assembly (EISA) method that was developed and optimized with the help of Design of Experiment (DoE) coupled with Full Factorial Design (FFD) methodology. Coupling DoE with FFD provides a statistical tool for optimizing the synthesis process while carrying out the smallest number of experiments. This tool builds a statistical framework to determine the significance of the studied factors, i.e., titanium-precursor type, surfactant type and surfactant quantity, along with their potential interactions, as well as with their optimum levels. The choice of the titanium-precursor type is found to be the predominant factor affecting the efficiency of TiO₂ for hydrogen gas evolution. The interaction between precursor type and surfactant type is also statistically significant. The statistically optimized study identifies that combining F-108 amphiphilic block copolymers with titanium(III) chloride solution leads to TiO₂ exhibiting the highest photocatalytic efficiency for the generation of molecular hydrogen. The thus prepared TiO₂ shows relatively high photocatalytic hydrogen evolution rates (1.22 mmol.h.⁻¹.g⁻¹) compared to the commercially available TiO₂ photocatalysts which are not active for hydrogen generation in the absence of a co-catalyst. Significant photocatalytic reforming of ethanol is achieved over the synthesized bare TiO₂ with the formation of acetaldehyde as the main by-product in the gas phase. This unexpected photocatalytic performance is mainly attributed to the shift of flat band potential towards more negative potentials as revealed from the characterization results in addition to the high density of charge carriers exhibiting longer lifetime shown by laser transient reflectance measurements. The latter showed the presence of a high number of trapped states, which are beneficial for the photocatalytic properties.

Download English Version:

https://daneshyari.com/en/article/6498068

Download Persian Version:

https://daneshyari.com/article/6498068

Daneshyari.com