Accepted Manuscript

Title: Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO₂/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum

Authors: Chunquan Li, Zhiming Sun, Ankang Song, Xiongbo Dong, Shuilin Zheng, Dionysios D. Dionysiou

PII: S0926-3373(18)30411-9

DOI: https://doi.org/10.1016/j.apcatb.2018.04.083

Reference: APCATB 16655

To appear in: Applied Catalysis B: Environmental

Received date: 4-3-2018 Revised date: 28-4-2018 Accepted date: 30-4-2018

Please cite this article as: Li C, Sun Z, Song A, Dong X, Zheng S, Dionysiou DD, Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO₂/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum, *Applied Catalysis B: Environmental* (2010), https://doi.org/10.1016/j.apcatb.2018.04.083

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO₂/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum

Chunquan Li ^{a, b}, Zhiming Sun ^{a, *}, Ankang Song ^a, Xiongbo Dong ^a, Shuilin Zheng ^{a, *}, Dionysios D. Dionysiou ^{b, *}

^a School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P.R. China

^b Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA

E-mail addresses: zhimingsun@cumtb.edu.cn (Z. Sun); shuilinzheng8@gmail.com (S.

Zheng); dionysios.d.dionysiou@uc.edu (D. D. Dionysiou)

Graphical Abstract

Novel 0D/2D TiO₂/kaolinite composite endowed with oxygen vacancy state was facilely fabricated via a mild sol-gel method associated with nitrogen atmosphere induction. Enhanced adsorption-photocatalytic degradation ability for the removal of ciprofloxacin (CIP) and formaldehyde within broad spectrum radiation were achieved. The enhancement was attributed to the generation of oxygen vacancies as well as the natural minerals carrier effect (enhanced adsorption ability, good dispersion performance, smaller grain size, improved electron-hole separation efficiency due to synergistic effect, etc). This study provides new insight into mineral

Corresponding authors. Fax: +86 10 62339920 (Z. Sun); +86 10 62339920 (S. Zheng);
+1 513 5564162 (D. D. Dionysiou)

Download English Version:

https://daneshyari.com/en/article/6498148

Download Persian Version:

https://daneshyari.com/article/6498148

<u>Daneshyari.com</u>