Accepted Manuscript

Title: Perspective intermediate temperature ceria based catalysts for CO oxidation

Authors: Igor V. Zagaynov, Alexander V. Naumkin, Yuriy V.

Grigoriev

PII: S0926-3373(18)30451-X

DOI: https://doi.org/10.1016/j.apcatb.2018.05.027

Reference: APCATB 16681

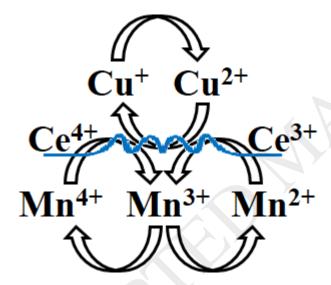
To appear in: Applied Catalysis B: Environmental

Received date: 6-3-2018 Revised date: 23-4-2018 Accepted date: 8-5-2018

Please cite this article as: Zagaynov IV, Naumkin AV, Grigoriev YV, Perspective intermediate temperature ceria based catalysts for CO oxidation, *Applied Catalysis B: Environmental* (2010), https://doi.org/10.1016/j.apcatb.2018.05.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT


Perspective intermediate temperature ceria based catalysts for CO oxidation

Igor V. Zagaynov¹, Alexander V. Naumkin², Yuriy V. Grigoriev^{3,4}

- 1 Baikov Institute of Metallurgy and Materials Science, Moscow, Russia
- 2 Nesmeyanov Institute of Organoelement Compounds, Moscow, Russia
- 3 Shubnikov Institute of Crystallography, Moscow, Russia
- 4 NRC Kurchatov Institute, Moscow, Russia

Corresponding author: +7(499)1352060, igorscience@gmail.com

Graphical abstract

Highlights

- Cu-Mn-Zr-Ce-O solid solutions were prepared
- Catalytic properties for CO oxidation in model reaction were investigated
- The optimum catalyst composition was Cu_{0.08}Mn_{0.02}(Zr_{0.1})Ce_{0.9}O₂

Abstract

The work is focused on the investigation of the influence of ternary metal oxide promoted ceria based materials (Cu-Mn-Zr-Ce-O) with various Cu/Mn molar ratios on the physicochemical and catalytic properties for CO oxidation in model reaction. It is shown that no diffraction peaks corresponding to coper and/or manganese oxides were indicated, ensuring the formation of solid

Download English Version:

https://daneshyari.com/en/article/6498163

Download Persian Version:

https://daneshyari.com/article/6498163

<u>Daneshyari.com</u>