

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Importance of the Cu oxidation state for the SO₂-poisoning of a Cu-SAPO-34 catalyst in the NH₃-SCR reaction

Peter S. Hammershøi^{a,b}, Peter N.R. Vennestrøm^a, Hanne Falsig^c, Anker D. Jensen^b, Ton V.W. Janssens^{a,*}

^a Umicore Denmark ApS, Nøjsomhedsvej 20, 2800 Kgs. Lyngby, Denmark

^b Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads B229, 2800 Kgs. Lyngby, Denmark

^c Haldor Topsoe A/S, Haldor Topsøe's Allé 1, 2800 Kgs. Lyngby, Denmark

ARTICLE INFO

Keywords: NH₃-SCR SO₂ poisoning Deactivation Cu-CHA DFT

ABSTRACT

Cu-exchanged zeolites of the CHA structure are state-of-the-art catalysts for selective catalytic reduction of NO_x with NH_3 in diesel aftertreatment systems. However, these catalysts deactivate in the presence of SO_2 , which is a constituent of diesel exhaust gas. In this article, the deactivation behavior and mechanisms of a Cu-SAPO-34 catalyst were studied with reactor tests and DFT calculations. Exposure of the catalyst to two different SO_2 concentrations and durations, but with the same total SO_2 exposure, calculated as the product of partial pressure of SO_2 and exposure time, lead to the same degree of deactivation. Exposure of the Cu-SAPO-34 catalyst to SO_2 in the presence and absence of NO and NH_3 at different temperatures between 200-600 °C showed different trends for the deactivation. Below 400 °C, the S/Cu ratio on the catalyst increased with temperature in absence of NO and NH_3 , while it decreased with increasing temperature in the presence of NO and NH_3 . This is explained by the ability of NO and NH_3 to reduce Cu(II) to Cu(I). DFT calculations show that SO_2 adsorbs more strongly on Cu(I) than on Cu (II). Above 400 °C, the S/Cu ratio decreased with temperature irrespective of the presence of NO and NH_3 . In all cases, the S/Cu ratio is lower than 1. This is not compatible with extensive deposition of ammonium sulfate when co-feeding SO_2 , H_2O and NH_3 . A more likely explanation for the deactivation is that SO_2 is mainly related to the Cu sites. This is further corroborated by DFT calculations showing that SO_2 and SO_3 , which is possibly formed by oxidation of SO_2 over Cu sites, interact similar with Cu in Cu-SAPO-34 and Cu-SSZ-13.

1. Introduction

Diesel engines operate with excess air in the combustion, leading to production of nitrogen oxides (NO_x). NO_x emissions from diesel engines are a source of air pollution and are therefore regulated. To meet legislation requirements for NO_x emissions, a modern aftertreatment systems for diesel engines contain one or more catalysts for the reduction of NO_x to N₂ by selective catalytic reduction with NH₃ (NH₃-SCR). The NH₃-SCR proceeds according to the reaction: $4 \text{ NH}_3 + 4 \text{ NO} + \text{ O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$. Urea injected in the exhaust gas stream is commonly used as a source for NH₃, and, if properly controlled, the NH₃-SCR reaction can reach very high degrees of NO_x removal. The currently applied catalysts for NH3-SCR are based on Voxide, Fe-zeolites or Cu-zeolites.

Current zeolite state-of-the-art NH_3 -SCR catalysts are based on the CHA structure due to its better hydrothermal stability than other commercial zeolite structures [1]. The CHA structure exists with an

overall chemical composition of $H_nAl_nSi_{1-n}O_2$ (SSZ-13) or $H_nSi_nAlP_{1-n}O_4$ (SAPO-34), under the assumption that only P is substituted by Si. Cu ions are introduced into the ion-exchange positions in these materials, and these Cu sites are the source of the catalytic activity of Cu-CHA catalysts. Compared to Fe-zeolites and vanadia-based SCR catalysts, the main advantages of the Cu-CHA catalysts are superior low-temperature SCR activity and lower N₂O selectivity [2,3]. A disadvantage of the Cu-CHA catalysts is their susceptibility towards poisoning by SO₂ [4,5]. SO₂ is an inevitable compound in diesel exhausts, and even at concentration levels below 15 ppm, as in ultra-low sulfur diesel [4,6], the resulting SO₂ in the exhaust gas, typically about 1–2 ppmv, has a significant impact on the performance of Cu-CHA catalysts. It is therefore important to understand how SO₂ affects the Cu-CHA catalysts.

The gas stream that the SCR catalyst is exposed to in a diesel exhaust system consists of several other compounds than SO_2 , including but not limited to O_2 , H_2O , NO and NH₃. These compounds may affect the

https://doi.org/10.1016/j.apcatb.2018.05.038

^{*} Corresponding author. E-mail address: tonv.w.janssens@eu.umicore.com (T.V.W. Janssens).

Received 19 February 2018; Received in revised form 9 May 2018; Accepted 14 May 2018 0926-3373/ @ 2018 Elsevier B.V. All rights reserved.

interaction of SO₂ with the Cu-CHA catalyst. Several SO₂-poisoning studies have been carried out in gas compositions where NO and NH₃ are omitted [4–11]. Such experiments have shown that the deactivation is due to SO_2 interactions with Cu, which is dependent on the temperature of SO₂ exposure. Adsorption of SO₂ mainly takes place at temperatures around 200 °C [5], while chemical reactions between SO₂ and Cu become more dominating at temperatures around 400 °C [5]. SO₂ reacts at the Cu sites in the CHA, resulting in (Cu,S) species with S in oxidation state +6, which are assigned to isolated Cu-sulfates [4,12]. This assignment is corroborated by their decomposition temperature of around 650 °C, which is consistent with the decomposition of bulk $CuSO_4$ [4.11.13], and by an observed 1:1 correlation between the S/Cu ratio of these species and the deactivation [11]. The formation of sulfates implies that SO₂ is oxidized over the catalyst, and the rate of oxidation increases with temperature [10]. The effect of the gas composition on the deactivation by SO2 is not fully understood, and therefore, it is important to improve the understanding in order to be able to transfer results to the SO₂-poisoning occurring in real exhausts.

It has been argued that the effect of NO and NH₃ on SO₂-poisoning is the formation of ammonium sulfate, which may infer mass transfer limitations by pore-blocking [14–16]. However, ammonium sulfate decomposes at about 350 °C, and can therefore feasibly be removed [16]. Moreover, the presence of NO and NH₃, or release of NH₃ from ammonium sulfate, has a suggested beneficial effect on the regeneration of SO₂-poisoned catalysts, due to the reducing properties of the SCR gas mixture and NH₃ [8,16].

In this article the SO₂ deactivation behavior of a Cu-SAPO-34 catalyst was investigated. The Cu-SAPO-34 was chosen because of its high hydrothermal stability so that high-temperature regeneration did not result in deterioration of the zeolite structure; something that cannot always be avoided with SSZ-13. We investigated the effect of SO₂ exposure time, SO₂ concentration, and the presence of NO and NH₃ on the deactivation by SO₂. DFT calculations were used to evaluate the interactions between Cu, SO₂ and SO₃ in order to obtain a better understanding of the temperature dependence, and effect of NO and NH₃, on the deactivation.

2. Experimental

2.1. Catalyst material and reactor testing conditions

In this study, we used a Cu-SAPO-34 catalyst with a (P+Al)/Si of 6.5 and a Cu-loading of 1.9 wt%, as determined by ICP-OES. The steady-state conversions of NO in the NH₃-SCR reaction were measured in a fixed-bed quartz reactor with an inner diameter of 2 mm, using 5 mg catalyst on dry matter basis, and a sieve fraction of 150–300 μ m. The SCR-feed gas for the activity measurements consisted of 500 ppmv NO, 530 ppmv NH₃, 10% O₂ and 5% H₂O, in N₂ at a total flow of 225 N mL/min- The inlet and outlet gas composition was determined using a Gasmet CX4000 FTIR analyser. Prior to the NH₃-SCR activity measurements, the catalyst was heated for 1 h in the SCR-feed gas at 550 °C. The effect of SO₂ on the NH₃-SCR activity was determined from a comparison of the NO_x conversion before and after exposure of the catalyst to an SO₂-containing feed gas in the same reactor setup.

The catalyst was exposed to SO₂ in a flow with either SCR-feed gas, or with 10% O₂ and 5% H₂O, balanced by N₂ to a total flow rate of 225 N mL/min. The inlet concentrations of SO₂ were 1.5 or 15 ppmv. The temperature and duration of SO₂ exposure were varied and are stated specifically with the results.

The evaluation of the NH_3 -SCR activity is based on the rate constant for the NH_3 -SCR reaction. The rate constants (*k*) are derived from measured steady state NO_x conversions, as shown in Eq. (1), assuming plug flow of the gas and that the NH_3 -SCR reaction is first order in NO.

$$k = -\frac{F}{W}\ln(1-X) \tag{1}$$

F is the total molar flow rate, W is the total mass of catalyst on a dry matter basis, and X is the NO_x conversion.

The deactivation of the catalyst is calculated from a comparison of rate constants after SO_2 exposure or regeneration with the corresponding rate constant of the fresh catalyst. In this article, we define the deactivation as:

Deactivation =
$$1 - \frac{k}{k_{fresh}}$$
 (2)

2.2. Computational

Spin polarized Density Functional Theory (DFT) calculations were used to obtain adsorption energies of O_2 , SO_2 and SO_3 on Cu species in SAPO-34 and SSZ-13. The calculations were performed with the GPAW package [17,18] using a real space grid-based projector augmented wave method. A grid spacing of h = 0.2 Å and a Fermi smearing of 0.1 K were found sufficient to obtain a satisfactory convergence of the relative energies. To account for Van der Waals interactions the BEEFvdW functional was used [19]. This functional has shown to produce reliable results for the interaction of molecules with zeolites [20,21]. Both SSZ-13 and SAPO-34 were represented by periodic cells with hexagonal symmetry containing 36 T-atoms (SSZ-13 cell parameters: a,b = 13.886 Å, c = 15.116 Å, $\alpha = 120^\circ$, β , $\gamma = 90^\circ$ and SAPO-34 cell parameters: a,b = 14.602 Å, c = 15.287 Å, $\alpha = 120^\circ$, β , $\gamma = 90^\circ$).

3. Results

3.1. Deactivation by SO_2 exposure and scalability

Fig. 1A shows the measured steady state NO_x conversions for the fresh catalyst, after exposure to SO_2 , and after regeneration at 550 °C. For the SO_2 exposure, 1.5 ppmv of SO_2 was added to the SCR-feed, which is in the SO_2 concentration range expected in automotive diesel exhaust, and the catalyst was held at 300 °C for 8 h. The regeneration of the catalyst was performed at 550 °C for 1 h in SCR-feed gas without SO_2 . Exposure to SO_2 leads to significantly lower steady state NO_x conversions in the temperature range 150–300 °C. Regeneration at 550 °C restores most of the original NO_x conversion in this temperature range. This behavior has also been observed for an aluminosilicate Cu-CHA catalyst, and can be understood in terms of irreversible and reversible deactivation [11]. According to the definitions in [11], the deactivation measured after regeneration at 550 °C is the irreversible deactivation, and the difference in deactivation after SO_2 exposure and regeneration at 550 °C is the reversible deactivation.

For practical reasons when investigating SO₂ deactivation, it is often useful to accelerate the SO₂-poisoning by increasing the SO₂ concentration and proportionally shortening the exposure time. The results are then interpreted in terms of the total SO₂ exposure, calculated as the product of the SO₂ partial pressure and the exposure time, rather than the SO₂ concentration. This interpretation requires that a direct proportionality exists between the exposure time and SO₂ concentration, such that these two parameters can be scaled with respect to SO₂-poisoning. This scalability was investigated by comparing the results of the non-accelerated SO₂ exposure, i.e. exposure to 1.5 ppmv SO₂, to the results from a catalyst exposed to an accelerated SO₂ exposure. For the accelerated SO₂ exposure, the SO₂ concentration was increased by a factor 10 and the exposure time was correspondingly decreased, thus exposing to 15 ppmv SO₂ in SCR-feed gas for 48 min at 300 °C. The steady state NOx conversions before and after the accelerated SO2 exposure, and after 1 h regeneration at 550 °C in SCR-feed gas, are plotted in Fig. 1B.

The appearance of the NO_x conversion curve for the accelerated SO_2 exposed catalyst in Fig. 1B, is very similar to that shown in Fig. 1A. The NO_x conversions of the fresh catalyst shown in Fig. 1B are slightly lower than those of the fresh catalyst in Fig. 1A, which is due to small

Download English Version:

https://daneshyari.com/en/article/6498193

Download Persian Version:

https://daneshyari.com/article/6498193

Daneshyari.com