Accepted Manuscript

Title: Manganese silicate based redox catalysts for greener ethylene production via chemical looping – oxidative dehydrogenation of ethane

Authors: Seif Yusuf, Luke Neal, Vasudev Haribal, Madison Baldwin, H. Henry Lamb, Fanxing Li

PII:	\$0926-3373(18)30236-4
DOI:	https://doi.org/10.1016/j.apcatb.2018.03.037
Reference:	APCATB 16495
To appear in:	Applied Catalysis B: Environmental
Received date:	19-12-2017
Revised date:	7-3-2018
Accepted date:	10-3-2018

Please cite this article as: Yusuf S, Neal L, Haribal V, Baldwin M, Lamb HH, Li F, Manganese silicate based redox catalysts for greener ethylene production via chemical looping – oxidative dehydrogenation of ethane, *Applied Catalysis B, Environmental* (2010), https://doi.org/10.1016/j.apcatb.2018.03.037

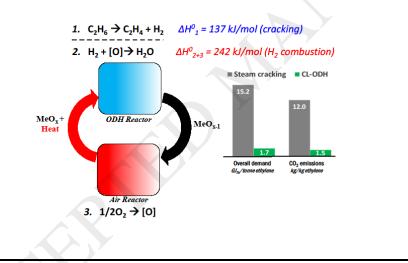
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Manganese Silicate based Redox Catalysts for Greener Ethylene Production via Chemical

Looping – Oxidative Dehydrogenation of Ethane

Authors:


Seif Yusuf¹, Luke Neal¹, Vasudev Haribal¹, Madison Baldwin¹, H. Henry Lamb¹, Fanxing

Li^{1*}

¹ Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, 27695-7905, United States.

* Corresponding author. Email: <u>fli5@ncsu.edu</u>

Graphical abstract

Highlights

- Ethane to ethylene conversion via chemical looping oxidative dehydrogenation (CL-ODH) is studied;
- Sodium tungstate promoted manganese silicates are effective redox catalysts for CL-ODH of ethane;
- Sodium tungstate promoter suppresses CO_x formation by inhibiting ethane activation on the surface;
- CL-ODH can potentially reduce CO₂ emissions for ethylene production by 89%.

Download English Version:

https://daneshyari.com/en/article/6498363

Download Persian Version:

https://daneshyari.com/article/6498363

Daneshyari.com