Accepted Manuscript

Title: Novel Pd/GdCrO₃ composite for photo-catalytical reduction of nitrate to N₂ with high selectivity and activity

Authors: Zhiang Hou, Fangfei Chen, Jinnan Wang, Corvini

Philippe François-Xavier, Thomas Wintgens

PII: S0926-3373(18)30254-6

DOI: https://doi.org/10.1016/j.apcatb.2018.03.055

Reference: APCATB 16513

To appear in: Applied Catalysis B: Environmental

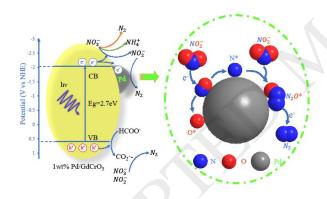
Received date: 30-12-2017 Revised date: 11-2-2018 Accepted date: 18-3-2018

Please cite this article as: Hou Z, Chen F, Wang J, François-Xavier CP, Wintgens T, Novel Pd/GdCrO₃ composite for photo-catalytical reduction of nitrate to N₂ with high selectivity and activity, *Applied Catalysis B*, *Environmental* (2010), https://doi.org/10.1016/j.apcatb.2018.03.055

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Novel Pd/GdCrO₃ composite for photo-catalytical reduction of nitrate to N₂ with high selectivity and activity


Zhiang Hou ¹, Fangfei Chen ¹, Jinnan Wang ^{* 1}, Corvini Philippe François-Xavier ², Thomas Wintgens ²

^{1.} State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China

^{2.} School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Basel 4132, Switzerland

*Corresponding author: wjnnju@163.com

Graphical abstract

Highlight

- 1wt% Pd/GdCrO₃ achieves high removal rate of nitrate and selectivity to N₂
- $\bullet \qquad \text{Negative CB value of } \mathsf{GdCrO_3} \text{ directly electron-drives catalytic reduction of nitrate} \\$
- Electrons transfer from CB of GdCrO₃ to Pd enhance utilization of charge carriers
- Nitrite reduction mechanism on the surface of Pd enhances the selectivity to N₂
- We provid efficient way to improve photocatalytic activity and selectivity to N₂

Download English Version:

https://daneshyari.com/en/article/6498369

Download Persian Version:

https://daneshyari.com/article/6498369

<u>Daneshyari.com</u>