Accepted Manuscript

Title: Molecular Structure and Sour Gas Surface Chemistry of Supported K₂O/WO₃/Al₂O₃ Catalysts

Authors: Minghui Zhu, Bin Li, Jih-Mirn Jehng, Lohit Sharma, Julian Taborda, Lihua Zhang, Eric Stach, Israel Wach, Zili Wu, Jonas Baltrusaitis

PII:	S0926-3373(18)30244-3
DOI:	https://doi.org/10.1016/j.apcatb.2018.03.044
Reference:	APCATB 16502
To appear in:	Applied Catalysis B: Environmental
Received date:	15-11-2017
Revised date:	30-1-2018
Accepted date:	15-3-2018

Please cite this article as: Zhu M, Li B, Jehng J-M, Sharma L, Taborda J, Zhang L, Stach E, Wach I, Wu Z, Baltrusaitis J, Molecular Structure and Sour Gas Surface Chemistry of Supported K₂O/WO₃/Al₂O₃ Catalysts, *Applied Catalysis B, Environmental* (2010), https://doi.org/10.1016/j.apcatb.2018.03.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Molecular Structure and Sour Gas Surface Chemistry of Supported K₂O/WO₃/Al₂O₃ Catalysts

Minghui Zhu,¹ Bin Li,¹ Jih-Mirn Jehng,¹ Lohit Sharma,¹ Julian Taborda,¹ Lihua Zhang,² Eric Stach,^{2,3} Israel Wachs,¹ Zili Wu^{4,5} and Jonas Baltrusaitis^{1,*}

- 1. Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA
- 2. Brookhaven National Laboratory, Center for Functional Nanomaterials, Upton, NY 11973, USA
- 3. Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- 4. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- 5. Center for Nanophase Material Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA

GRAPHICAL ABSTRACT

Highlights

- 20% WO₃/Al₂O₃ contains isolated and oligomeric surface WO_x species on Al₂O₃
- addition of K₂O increased the concentration of isolated surface WO_x species with no WO₃ nanoparticles
- K₂O presence results in carbonate upon CO₂ adsorption while SO₂ inhibits its formation

Abstract

Molecular structures of the unpromoted and K₂O-promoted supported WO₃/Al₂O₃ catalysts were studied with *in situ* Raman and UV-vis spectroscopy. *In situ* Raman spectra revealed that supported 20% WO₃/Al₂O₃ corresponds to near monolayer coverage of isolated and oligomeric

Download English Version:

https://daneshyari.com/en/article/6498371

Download Persian Version:

https://daneshyari.com/article/6498371

Daneshyari.com