Accepted Manuscript

Title: Thermally stable TiO_2 quantum dots embedded in SiO_2 foams: Characterization and photocatalytic H_2 evolution

activity

Authors: Donglai Pan, Zhiya Han, Yingchun Miao, Dieqing

Zhang, Guisheng Li

PII: S0926-3373(18)30134-6

DOI: https://doi.org/10.1016/j.apcatb.2018.02.022

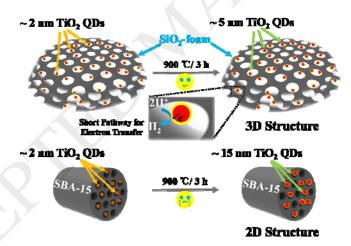
Reference: APCATB 16417

To appear in: Applied Catalysis B: Environmental

Received date: 16-12-2017 Revised date: 7-2-2018 Accepted date: 10-2-2018

Please cite this article as: Pan D, Han Z, Miao Y, Zhang D, Li G, Thermally stable TiO₂ quantum dots embedded in SiO₂ foams: Characterization and photocatalytic H₂ evolution activity, *Applied Catalysis B, Environmental* (2010), https://doi.org/10.1016/j.apcatb.2018.02.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


ACCEPTED MANUSCRIPT

Thermally stable TiO₂ quantum dots embedded in SiO₂ foams: characterization and photocatalytic H₂ evolution activity

Donglai Pan,^{b,†} Zhiya Han,^{b,†} Yingchun Miao,*a Dieqing Zhang,^b Guisheng Li,*b aFaculty of Chemical and environment Sciences, Qujing Normal University, Qujing 65 5000, P. R. China; bKey Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China, † equal contribution

*Corresponding authors: miaoyingchun1979@126.com, liguisheng@shnu.edu.cn

Graphical abstract

Highly dispersed and thermally stable TiO_2 quantum dots were anchored in the pore channels of SiO_2 foams for both inhibiting the aggregation of TiO_2 -QDs and improving the phase transformation temperature from anatase to rutile, achieving a high photocatalytic activity for H_2 evolution.

Research highlights

Download English Version:

https://daneshyari.com/en/article/6498501

Download Persian Version:

https://daneshyari.com/article/6498501

<u>Daneshyari.com</u>