Accepted Manuscript

Title: Novel V₂O₅-CeO₂-TiO₂-SO₄²⁻ nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH₃ in excess O₂

Authors: Jihene Arfaoui, Abdelhamid Ghorbel, Carolina

Petitto, Gerard Delahay

PII: S0926-3373(17)31042-1

DOI: https://doi.org/10.1016/j.apcatb.2017.10.059

Reference: APCATB 16139

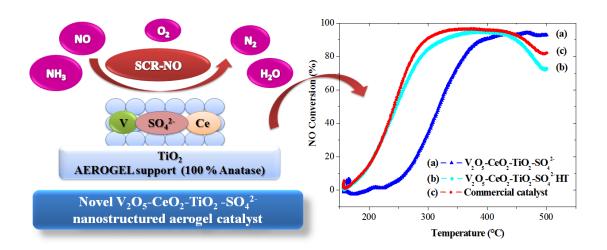
To appear in: Applied Catalysis B: Environmental

Received date: 26-5-2017 Revised date: 19-10-2017 Accepted date: 26-10-2017

Please cite this article as: Jihene Arfaoui, Abdelhamid Ghorbel, Carolina Petitto, Gerard Delahay, Novel V2O5-CeO2-TiO2-SO42— nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2, Applied Catalysis B, Environmental https://doi.org/10.1016/j.apcatb.2017.10.059

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT


Novel V_2O_5 -Ce O_2 -Ti O_2 -SO $_4^2$ - nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH₃ in excess O_2

Jihene Arfaoui*a, Abdelhamid Ghorbela, Carolina Petittob, Gerard Delahayb

^aUniversité Tunis El Manar, Laboratoire de Chimie des Matériaux et Catalyse, Département de Chimie, Faculté des Sciences de Tunis, Campus Universitaire Farhat Hached d'El Manar, 2092, Tunis, Tunisia.

Dedicated to Professor Dr. Abdelhamid Ghorbel on the occasion of his 71th birthday.

Graphical abstract

Highlights research

- Novel V₂O₅-CeO₂-TiO₂-SO₄²⁻ aerogel catalyst was prepared for NO-SCR by NH₃.
- Cerium redox sites play a key role in the low temperature SCR-NO by NH₃.
- Acidity of SO₄²- incresases NO conversion and N₂ selectivity at high temperature.
- V_2O_5 -Ce O_2 -Ti O_2 -S O_4 ²⁻ exhibits better SCR activity at 450-500 °C than commercial one.

^bInstitut Charles Gerhardt Montpellier, UMR 5253 CNRS/ENSCM/UM, Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

^{*} Corresponding author: E-mail address: <u>jihenar@yahoo.fr</u>, Tel: +216 21 143 668, Fax: +216 71 875 008

Download English Version:

https://daneshyari.com/en/article/6498728

Download Persian Version:

https://daneshyari.com/article/6498728

<u>Daneshyari.com</u>