Accepted Manuscript

Title: N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction

Authors: Shengyu Jing, Lishang Zhang, Lin Luo, Jiajia Lu, Shibin Yin, Pei Kang Shen, Tsiakaras Panagiotis

PII: S0926-3373(17)30999-2

DOI: https://doi.org/10.1016/j.apcatb.2017.10.025

Reference: APCATB 16105

To appear in: Applied Catalysis B: Environmental

Received date: 28-8-2017 Revised date: 5-10-2017 Accepted date: 11-10-2017

Please cite this article as: Shengyu Jing, Lishang Zhang, Lin Luo, Jiajia Lu, Shibin Yin, Pei Kang Shen, Tsiakaras Panagiotis, N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction, Applied Catalysis B, Environmental https://doi.org/10.1016/j.apcatb.2017.10.025

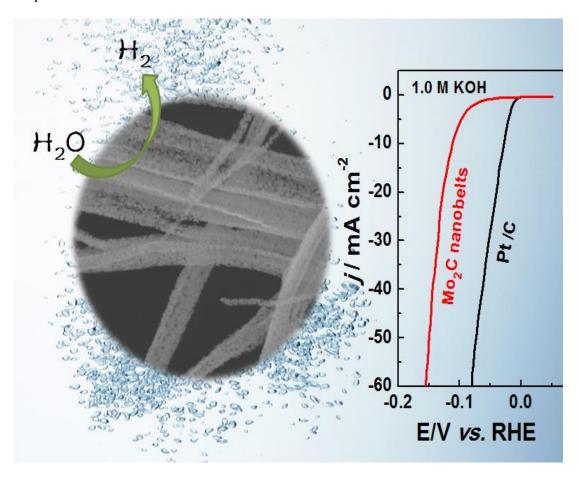
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction

Shengyu Jing^a, Lishang Zhang^{a, b}, Lin Luo^{b*}, Jiajia Lu^b, Shibin Yin^{b*}, Pei Kang Shen^b, Tsiakaras Panagiotis^{c,d,e*}

^aSchool of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.


^bGuangxi Key Laboratory of Electrochemical Energy Materials, Collaborative Innovation Center of Renewable Energy Materials (CICREM), State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China.

^cLaboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, Yekaterinburg 620990, Russia.

^dLaboratory of materials and devices for electrochemical power industry, Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russia

^eLaboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.

Graphical abstract

Highlights

- A cost-effective, environmentally-friendly and template-free method is developed to synthesize N-doped Mo₂C
- The nano-morphology of Mo₂C is controlled by adjusting water content and treatment time
- The as prepared Mo₂C nanobelts exhibited excellent activity and good stability for hydrogen

Download English Version:

https://daneshyari.com/en/article/6498784

Download Persian Version:

https://daneshyari.com/article/6498784

<u>Daneshyari.com</u>