

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

Nanostructured BaTiO₃/Cu₂O heterojunction with improved photoelectrochemical activity for H₂ evolution: Experimental and first-principles analysis

^a Department of Chemistry, Dayalbagh Educational Institute, Agra 282 110, India

^b Department of Physics & Computer Sciences, Dayalbagh Educational Institute, Agra 282 110, India

^c Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India

ARTICLE INFO

Article history: Received 29 December 2014 Received in revised form 15 September 2015 Accepted 16 February 2016 Available online 21 February 2016

Keyword: Heterojunction Spray pyrolysis Sol-gel Photoelectrochemical Effective mass hand offset

1. Introduction

ABSTRACT

Nanostructured BaTiO₃/Cu₂O heterojunction electrodes with varying thickness of Cu₂O thin films were synthesized using spray deposition of porous cuprous oxide films onto the surface of spin coated nanostructured thin films of BaTiO₃, First-principles based density functional theory calculations have been done for the first time on the band offsets of BaTiO₃/Cu₂O heterojunction interface and effective mass of electron and hole for bulk BaTiO₃ and Cu₂O, exhibited better separation of the photogenerated charge carriers at the BaTiO₃/Cu₂O interface. Experimental results on photoelectrochemical activity of BaTiO₃/Cu₂O heterojunction in the photoelectrochemical cell for water splitting reaction validate the theoretical results. Maximum photocurrent density value of 1.44 mA/cm² at 0.95 V/SCE was observed for BaTiO₃/Cu₂O heterojunction photoelectrode with 442 nm thickness. Photo-generated charge carriers apparently transfer more easily in BaTiO₃/Cu₂O heterojunction than that in pristine Cu₂O and BaTiO₃.

© 2016 Elsevier B.V. All rights reserved.

CrossMark

Various Strategies have been attempted to improve performance of photoelectrodes in the Photoelectrochemical splitting of water including dye sensitization [1] or using inorganic sensitizers [2], doping [3,4], swift heavy ion irradiation [5], use of heterojunction or layered systems [6,7]. Overall performance of PEC water splitting process is limited by efficiency of photogenerated charge carriers separation and their rate of electron transfer to the reaction site [8–10]. An efficient charge separation at the interface is still a challenge before the researchers and scientific community at large. Bilayered/heterojunction system of metal oxide semiconductors is one of the recent strategies towards improving the performance of the photocatalyst with inherent merits [11–20]. Use of *p*-*n* heterojunction as a building block for nanodevices [21-25] is preferred over single semiconductors [26], because *p*-*n* junction creates a region with potential gradient near which electrons in n-type

Corresponding author.

E-mail addresses: vibhasatsangi@gmail.com (V.R. Satsangi).

waghmare@jncasr.ac.in (U.V. Waghmare), drsahabdas@gmail.com (S. Dass).

http://dx.doi.org/10.1016/j.apcatb.2016.02.037 0926-3373/© 2016 Elsevier B.V. All rights reserved. semiconductors and holes in p-type semiconductors are depleted, and potential gradient thus generated facilitates the separation of charge carriers thereby reducing the recombination of electrons and holes. BaTiO₃ can be consider as a good photoelectrode for photoelectrochemical water splitting as it has high resistance to corrosion and photocorrosion in aqueous media and well-matched energy band edges with the redox level of water, However, BaTiO₃ band gap is about 3.2 eV and it mostly absorbs in the ultraviolet region of spectrum with a small amount of visible light [27] Combination of n-type $BaTiO_3$ with p-type semiconductor such as Cu_2O_3 , MoS₂ CuO to form *p*-*n* heterojunction can be a effective way to improve the absorption in visible light and separation of photogenerated charge carriers. Among these p-type semiconductors Cu₂O is highlighted due to its low band gap (Eg=2.2 eV) and promising material for conversion of solar energy into electrical or chemical energy [28]. Moreover, one of the physical quantities that play an important role in characterizing the interface of semiconductor heterojunction systems is the band offset, i.e., relative position of the energy levels on both sides of the interface. Difference between the positions of the top of the valence bands and bottom of the conduction bands of the two materials is valence band offset (VBO) and conduction band offset (CBO) respectively. These band discontinuities play a fundamental role in deciding the transport properties of heterojunction systems. With this idea, this paper presents the First-principles density functional pseudopotential calculations on the band offsets of BaTiO₃/Cu₂O heterojunction interface and effective mass of electron and hole for bulk BaTiO₃ and Cu₂O to explain the better separation of the photogenerated charge carriers at the BaTiO₃/Cu₂O interface and their experimental validations on photoelectrochemical response of nanostructured BaTiO₃ thin films modified by overlayering of Cu₂O with varying thickness. Prepared BaTiO₃/Cu₂O heterojunction photoelectrodes were also characterized for their structural, electrical and optical properties to assess the mechanism by which this concept influences the photoelectrode performance.

2. Experimental

Copper(II) acetate $[Cu(CH_3COO)_2 \cdot H_2O$, Aldrich 98%], Dextrose [Fisher 99.5%] and isopropanol $[(CH_3)_2CHOH$, Qualigens 99.5%] were used for cuprous oxide synthesis. For the synthesis of BaTiO₃, barium acetate [Ba(CH_3COO)_2, Aldrich 99%], titanium(IV) isopropoxide [Ti(OC_2H_4CH_3)_4, Aldrich 99%], 2-methoxyethanol [CH_3OCH_2CH_2OH, Aldrich 99.3%] and glacial acetic acid [CH_3COOH, Qualigens, 99.5%], were used as precursor solution.

2.1. Preparation of photoelectrode

2.1.1. Preparation of nanostructured BaTiO₃ thin films

Nanostructured thin films of BaTiO₃ were deposited on ITO (Sn: In₂O₃) glass substrate using sol-gel spin coating method. The precursor solution comprising of barium acetate [Ba(CH₃COO)₂] and titanium isopropoxide [Ti(OC₂H₄CH₃)₄] dissolved in glacial acetic acid (CH₃COOH) and 2-methoxyethanol (CH₃OCH₂CH₂OH). Initially an appropriate ratio of solid-state barium acetate was dissolved in glacial acetic acid. In second step stoichiometric amount of titanium isopropoxide was dissolved in 2-methoxyethanol with stirring at 70 °C for 30 mins and cooled to room temperature. Both solutions were then mixed with each other for making stoichiometric, transparent, and stable Barium titanate precursor. The films were spin coated on ITO at 2000 rpm for 20 s and sintered at $600\degree$ C for 2 h [29]. Finally films were slowly cooled to room temperature inside the furnace. One third length of ITO substrate was initially covered by transparent tape to establish the electrical contact to convert them into electrodes. Synthesis of BaTiO₃ thin films from acetate precursor shown in the following flow chart:

Table 1

Thicknesses with other details of samples.

Film thickness (nm)					
S.no.	Cu ₂ O	BaTiO ₃	overall thickness	Acronym	
1	142	-	142	А	
2	-	156	156	В	
3	142	156	298	С	
4	286	156	442	D	
5	307	156	463	E	
6	541	156	697	F	

2.1.2. Preparation of BaTiO₃/Cu₂O heterojunction thin films

Nanostructured BaTiO₃/Cu₂O heterojunction thin films were obtained by deposition of Cu₂O thin film layer with varying thickness over the predeposited BaTiO₃ thin film by spray pyrolysis method (Holmarc, India). The precursor solution containing of Copper(II) acetate monohydrate (Cu(CH₃COO)₂·H₂O), and Dextrose dissolved in water were used as starting compounds. In addition 20 vol% of 2-propanol [(CH₃)₂CHOH (Qualigens 99.5%)] was added to the above described aqueous solution. Detailed methodology has been reported elsewhere [30]. To optimize the photoelectrochemical response of BaTiO₃/Cu₂O heterojunction thin films, 15, 30, 45 and 60 s spray periods were tried for the deposition of Cu₂O thin films. The possible chemical reactions for the formation of Cu₂O crystal are shows given below:

 $Cu(CH_3COO)_2.H_2O \xrightarrow{aq} 2Cu^{2+}+CH_2COO-+H_2O$

 $2Cu^{2+} + C_6H_{12}O_6 + H_2O \ \rightarrow \ 2Cu^+ + C_6H_{12}O_7 + 2H^+$

 $2Cu^+ + 2H_2O + OH^- \rightarrow \ Cu_2O + 4H^+ + H_2O$

Thicknesses with other details of samples prepared have been summarized in Table 1. To use BaTiO₃/Cu₂O heterojunction thin films as photoelectrode in PEC cell, electrical contacts were obtained using silver paste and copper wire, from the uncoated area of the conducting glass substrate. The area of contact was later covered with non-transparent and non-conducting epoxyresin (Hysol, Singapore). The effective area of the photoelectrode available for illumination was 1.0 cm².

3. Characterization

Cross-sectional and surface morphology of samples was characterized using field emission scanning electron microscope

Download English Version:

https://daneshyari.com/en/article/6499163

Download Persian Version:

https://daneshyari.com/article/6499163

Daneshyari.com