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a  b  s  t  r  a  c  t

In this  paper  we  report  the  first example  of hybrid  materials  based  on  poly(methlymethacrylate)  (PMMA)
matrices  covalently  reinforced  by  MyOx(OH)w(O(O)CR)z oxoclusters  (M  =  Zr  or Hf),  used  as  heterogeneous
catalytic  systems  for hydrogen  peroxide  activation.  The  resulting  hybrids  were  used  to catalyze  the  oxi-
dation  of dibenzothiophene  (DBT)  to  the  corresponding  sulfoxide  (DBTO)  and sulfone  (DBTO2),  in order
to demonstrate  their  potential  application  for  the  oxydesulfurization  (ODS)  of a fuel.  Thanks  to  catalyst
confinement  and  to the higher  affinity  of  the  polymeric  matrix  towards  polar  substrates,  the heteroge-
neous  set-up  displays  improved  performances  with  respect  to the corresponding  homogeneous  systems.
At 65 ◦C, a  DBT  conversion  higher  than  84%  was  obtained  in  24  h,  with a  >94%  selectivity  for  DBTO2.
The  stability  of  the  hybrid  materials  under  catalytic  conditions  was  successfully  assessed  by  a  combined
spectroscopic  approach,  based  on  FT-IR,  resonance  Raman,  Solid State  Nuclear  Magnetic  Resonance,  X-ray
Absorption  and  Small  Angle  X-ray  scattering  measurements.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Oxoclusters of early transition metals are a versatile class of
polynuclear compounds built up of a limited number of 3–5 groups
metal atoms, such as TiIV, ZrIV, HfIV or NbV, linked by oxygen
bridges and coordinated by organic ligands [1,2]. These compounds
are globally neutral and discrete species with general formula
MyOx(OH)w(O(O)CR)z , where typically organic carboxylates act as
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bidentate ligands. They can display different nuclearities (i.e. num-
ber of constituent metal atoms, y = 2–12), coordination number of
the metal atoms (varying between 6 and 9) and connectivity modes
(corner, edge or face sharing of polyhedral units). In some cases they
also involve an alkaline earth (e.g. Ba, Mg)  metal [3].

Since these oxoclusters are characterized by the presence of
early transition metals in their highest oxidation state, they are
appealing candidates as catalysts for peroxide activation [4,5].
Moreover, Zr and Hf-based multimetallic complexes have been
reported to activate hydrogen peroxide, promoting the oxidation
of different substrates (sulfides and sulfoxides, alcohols) both in
water and in organic solvents [6–11]. As far as zirconium-based
oxoclusters are concerned, we have recently evidenced the possi-
bility to use two different complexes to activate hydrogen peroxide
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and oxidize organic substrates [12]. In such preliminary study, the
oxidation of methyl p-tolylsulfide to the corresponding sulfoxide
and sulfone was chosen as model reaction, showing an interest-
ing reactivity towards sulfoxide oxidation [13]. However, despite
the encouraging results, the hydrolytic stability of such oxoclusters
is too low to allow a practical application in homogeneous catal-
ysis, since they easily rearrange and precipitate from the reaction
mixture.

Owing to the possibility to use oxoclusters as building blocks
for the synthesis of different typologies of hybrid materials [14]
with enhanced functional (e.g. dielectric, magnetic etc.) and struc-
tural (thermal, mechanical) properties [15], we  have devised novel
heterogeneous systems based on the covalent immobilization of Zr
and Hf oxoclusters into a polymeric matrix.

The protection of a catalytically active system by embed-
ding/anchoring it within a matrix is an underlying and widely
used strategy in heterogeneous catalysis [16]. Within this sce-
nario, the preparation of hybrid materials through the integration
of the multimetallic catalytic active species into a polymeric matrix
is a fertile field of research [17–20]. Indeed, this strategy offers
interesting perspectives for devising continuous flow processes,
where the polymer may  contribute to improve the reaction selec-
tivity and/or enable process intensification, by coupling catalysis
and separation technologies [20,21]. Nevertheless, to the best of
our knowledge, the hybrid materials here described are the first
example of heterogeneous catalysts based on the covalent immo-
bilization of oxoclusters. Not only the covalent bonds endow the
final material with enhanced stability, but also prevent phases sep-
aration inside the polymer matrix and leaching.

In this framework, different acrylate copolymers were pre-
pared by changing the nature of the oxocluster as well as the
oxocluster/monomer molar ratio, which in turn, inter alia, affect
the cross-linking degree of the resulting hybrid. The effectiveness
of the hybrid materials as heterogeneous catalysts was evaluated
in the oxidation of an aromatic sulfide by H2O2, in a biphasic
n-octane/acetonitrile system, as an example of sustainable fuel
desulfurization process [22,23]. In particular, we exploited the oxo-
cluster reactivity to perform the oxidation of dibenzothiophene
(DBT), dissolved in n-octane, to the corresponding sulfoxide (DBTO)
and sulfone (DBTO2), whereby the oxidized products can be easily
extracted by the polar solvent [20]. Thanks to the enhanced affinity
of the polymeric matrix toward polar substrates and solvents, the
heterogeneous set-up shows better performances than the corre-
sponding homogeneous systems. Furthermore, the heterogeneous
catalysts can be recovered and reused. FT-IR, resonance Raman,
Solid State Nuclear Magnetic Resonance (SS-NMR), X-ray Absorp-
tion (XAS), and Small Angle X-ray Scattering measurements (SAXS)
highlighted, indeed, that the hybrids are endowed with appreciable
stability even after catalytic turnover.

2. Experimental

2.1. Materials and chemicals

Zirconium butoxide (Zr(OnBu)4, 80% wt in n-butanol), zirco-
nium propoxide (Zr(OnPr)4) 70% wt in n-propanol), vinylacetic
acid, dibenzothiophene (DBT), dibenzothiophene sulfone (DBTO2),
hydrogen peroxide (30% wt in water) were all purchased from
Sigma–Aldrich and used as received. Hafnium butoxide (Hf(OnBu)4,
95% wt in n-butanol) was supplied by ABCR. Methacrylic acid 99%,
and methylmethacrylate, purchased from Sigma–Aldrich, were fil-
tered on neutral alumina to remove the inhibitor. All the chemicals
were stored under argon, while the solvents were additionally
stored on molecular sieves. Dibenzothiophene sulfoxide (DBTO)
was synthesized following a literature procedure [24]. Oxoclus-

ters M4O2(O(O)CC(CH3) = CH2)12 (Hf4, with M = Hf) [25] or (Zr4,
with M = Zr) [26], Zr6(OH)4O4(O(O)CC(CH3) = CH2)12 (Zr6) [27],
[Zr6O4(OH)4(O(O)CCH2CH = CH2)12]2 6CH2 = CHCH2C(O)OH (Zr12)
[28], were synthesized under argon, using standard Schlenk tech-
niques, according to literature procedures. The structure of all
oxoclusters was  confirmed by measuring the unit cell dimensions
on a number of different single crystals by diffraction technique.
Moreover, the nature of the bulk precipitate formed by a mix-
ture of single crystals and an apparently amorphous solid has been
investigated by X-ray powder diffraction techniques, by compari-
son with the spectra simulated from the single crystal data that has
confirmed the purity of the products.

2.2. Hybrid materials syntheses

The hybrid materials were prepared by implementing a known
procedure [29]. In a typical polymerization, a weighed amount
(0.7 g, moles amount depending on the oxocluster) of oxoclus-
ter was  dissolved in methyl methacrylate (3–12 g), so to achieve
oxocluster: MMA  molar ratios of 1:50, 1:100, and 1:200. The ther-
moinitiator benzoylperoxide (BPO) (3% wt. with respect to the
monomer) was finally added to the suspension and the reaction
mixture was heated at 80 ◦C for 1 h. Glassy monolithic materi-
als were thus obtained. Samples were labeled as MxMMAnT with
M = Zr and x = 4, 6 or 12, or M = Hf and x = 4, n (molar ratio) = 50,
100 or 200, while T stands for thermal polymerization. Refer-
ence PMMA  (poly(methylmethacrylate)) was prepared by using the
same procedure, without adding the oxocluster. Porogenic solvents
(1,4-butandiol and 2-propanol, 1:2 v/v) were added to the reaction
mixture to produce porous polymers. In this latter case, samples
were labeled as MxMMAnP.

2.3. Solid State NMR measurements

13C SS-NMR spectra were recorded on a Varian InfinityPlus 400
spectrometer, working at a Larmor frequency of 400.02 MHz  and
100.59 MHz  for hydrogen-1 and carbon-13 nuclei, respectively,
using a 7.5 mm probehead with a 90◦ 1H pulse duration of 5 �s. 13C
Cross Polarization-Magic Angle Spinning (CP-MAS) spectra were
recorded with high-power decoupling from 1H nuclei, spinning the
samples at a MAS  frequency between 5 and 6 kHz (depending on
the sample), using a contact time of 1 ms,  a recycle delay of 5 s and
accumulating 10,000 transients. The 13C chemical shift scale was
calibrated using hexamethylbenzene and TMS  as secondary and
primary references, respectively. All the spectra were recorded at
25 ◦C, using air as spinning gas.

2.4. XAS measurements

The XAS measurements were performed at the XAFS beam-
line at Elettra Synchrotron (Trieste, Italy). A Si(311) double crystal
monochromator was used for measurements at the Zr K-edge
(17.998 keV). The second monochromator crystal was tilted for
optimal harmonic rejection. The spectra were recorded in trans-
mission mode using ionization chambers as detectors. Energy
calibration was performed with a Zr metal foil. The solid sam-
ples were pressed into self-supporting pellets using cellulose as
a binder.

Data evaluation started with background absorption removal
from the experimental absorption spectrum by using the auto-
mated removal routine found in the Athena software [30]. The
threshold energy E0 was determined as the maximum in the first
derivative spectrum. To determine the smooth part of the spec-
trum, corrected for pre-edge absorption, a piecewise polynomial
was used. It was  adjusted in such a way that the low-R components
of the resulting Fourier transform were minimal. After division
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